Math, asked by gauravpandey9652, 1 year ago

how many term of the ap 9, 17 ,25 must be taken that their sum is 636

Answers

Answered by Cassisto
24
a=9
common difference d=8
let sum of n terms be 636
636 =  \frac{x}{2} (2 \times 9+ (x - 1)8) \\ 636= \frac{x}{2 }  (18 + 8x - 8) \\  636 =  \frac{x}{2}  (10  + 8x) \\ 636 =  \frac{x \times 2}{2} (5  +  4x) \\ 636 = 5x  +  4 {x}^{2}  \\ 4 {x}^{2}   + 5 x- 636 = 0 \\ 4 {x}^{2}  + 53x - 48x - 636 = 0 \\ x(4x + 53) - 12(4x + 53) = 0 \\  (4x + 53)(x - 12) = 0 \\ x = 12 \\
hence sim of first 12 terms will 636

Cassisto: ol. mark me brainliest
Cassisto: PLEASE
gauravpandey9652: okk
Answered by Anonymous
3

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf\huge Let: first\: term\; be\: a \:and\: CD\: = 17 - 9 = 8



\bf\huge => S_{n} = 636



\bf\huge => \frac{N}{2}[2a + (n - 1)d] = 636

\bf\huge => \frac{N}{2}[2\times 9 + (n - 1)8] = 636



\bf\huge => \frac{N}{2} (8n - 10) = 636



\bf\huge => n(4n + 5) = 636



\bf\huge => 4n^2 + 5n + 636 = 0



\bf\huge => n = \frac{-5 + \sqrt{25 - 4\times 4\times -636}}{2\times 4}



\bf\huge = \frac{-5 + \sqrt{25 + 10176}}{8}



\bf\huge = \frac{- 5 + \sqrt{10201}}{8}



\bf\huge = \frac{-5 + 101}{8}



\bf\huge = \frac{96}{8} , \frac{-106}{8}



\bf\huge = 12 , \frac{-53}{4}



\bf\huge But\: n \:cannot\: be\: Negative



\bf\huge => n = 12



\bf\huge Hence\:Sum\: of\: 12\: terms\: is\: 636




\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}


Similar questions