Math, asked by jyotsanalalwani06, 11 months ago

How many terms must be taken of the series: -5,-1,3... to make the sum 897?

Answers

Answered by mansurijishan805
1

Step-by-step explanation:

a=-5,d=-1-(-5)=-1+5=4 Sn= 897

sn =  \frac{n}{2} (2a + (n - 1)d \\ 897 \times 2 = n(2( - 5) + (n - 1)(4) \\ 1794 = n( - 10 + 4n - 4) \\ 1794 = n(4n - 14) \\  4 {n}^{2}  - 14n - 1794 = 0 \\ 4 {n}^{2}  - 92n + 78n- 1794 = 0 \\ 4n(n - 23) + 78(n  \:  - 23) = 0 \\ (n - 23)(4n + 78) = 0 \\ n - 23 = 0 \:  \:  \:  \: or \:  \: 4n + 78 = 0 \\ n = 23 \:  \:  \: or \: n = -   \frac{78}{4}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   n > 1 \\ so \: n = 23

in series have 23 terms them sums are 897

Similar questions