Math, asked by tauseef84, 3 months ago

how many terms of ap 16 14,12 are needed to give the sum 60 explain why do we get two answers​

Answers

Answered by mathdude500
4

─━─━─━─━─━─━─━─━─━─━─━─━─

Answer:-

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{an \: ap \: series \: 16, \: 14, \: 12, \:  .\:.  \: .} \\ &\sf{S_n \:  =  \: 60} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{number \: of \: terms, \: n}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\blue{S_n\:=\dfrac{n}{2}  \: ( \: 2\:a\:+\:(n\:-\:1)\:d \: )}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is sum of first n terms.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf Gɪᴠᴇɴ : \begin{cases} &\sf{First \:  term,  \: a  \: =  \: 16} \\ &\sf{Comon \:  difference, d = 14 - 16 = - 2.}\\ &\sf{Sum \:  of  \: terms, \: S_n = 60}\\ &\sf{Let \:  number  \: of  \: terms \:  \:  be \:  n} \end{cases}\end{gathered}\end{gathered}

\sf \:  ⟼S_n \:  =  \: 60

\sf \:  ⟼ \:\dfrac{n}{2}  \: ( \: 2\:a\:+\:(n\:-\:1)\:d \: ) \:  = 60

\sf \:  ⟼\dfrac{n}{2} (2 \times 16 + (n - 1)( - 2) \: ) = 60

\sf \:  ⟼n \: (32 - 2n + 2) = 120

\sf \:  ⟼n \: (34 \:  -  \: 2n) \:  =  \: 120

\sf \:  ⟼ \: 34n \:  -  \:  {2n}^{2}  \:  =  \: 120

\sf \:  ⟼ {2n}^{2}  \:  -  \: 34n \:  + 120 = 0

\sf \:  ⟼ {n}^{2}  - 17n \:  + 60 \:  =  \: 0

\sf \:  ⟼ {n}^{2}  - 12n - 5n + 60 = 0

\sf \:  ⟼n(n - 12) - 5(n - 12) = 0

\sf \:  ⟼(n - 12)(n - 5) = 0

\bf\implies \:n \:  =  \: 12 \: or \: n \:  =  \: 5

─━─━─━─━─━─━─━─━─━─━─━─━─

─━─━─━─━─━─━─━─━─━─━─━─━─

Attachments:
Similar questions