how many terms of AP 63,60 ,57 must be so that their sum is 693?
Answers
Answered by
57
Given AP is 63,60,57...
a = 63, d = 60 - 63 = -3.
We know that sn = n/2(2a + (n-1)d)
693 = n/2(2(63) + (n-1)*(-3))
693 = n/2(126 - 3n + 3)
1386 = n(129-3n)
3n^2 - 129n + 1386 = 0
3n^2 - 66n - 63n + 1386 = 0
3n(n - 22) - 63(n-22) = 0
(3n - 63) = 0 (or) (n-22) = 0
n = 21 (or) 22.
Hope this helps! :-))
a = 63, d = 60 - 63 = -3.
We know that sn = n/2(2a + (n-1)d)
693 = n/2(2(63) + (n-1)*(-3))
693 = n/2(126 - 3n + 3)
1386 = n(129-3n)
3n^2 - 129n + 1386 = 0
3n^2 - 66n - 63n + 1386 = 0
3n(n - 22) - 63(n-22) = 0
(3n - 63) = 0 (or) (n-22) = 0
n = 21 (or) 22.
Hope this helps! :-))
Dheerajrockzz996:
bro it really current
Answered by
15
For given A.P,
first term,a=63
common diffrence, d= 60-63= -3
sum of n terms, Sn=693
Sn= (n/2) [2a+(n-1)d]
693=(n/2)[2*63+(n-1)*(-3)]
1386= n[126-3n+3]
1386= n[129-3n]
1386=n[129-3n]
3n²-129n+1386=0
√D=√ [(-129)²-4*3*1386] =√9 =3
n=[-b±√D]÷2a
n= [129±3]÷6
n=(129+3)/6 OR n=(129-3)/6
n= 22,,
n=126/6=21
Hence, no of terms may be 22 or 21
first term,a=63
common diffrence, d= 60-63= -3
sum of n terms, Sn=693
Sn= (n/2) [2a+(n-1)d]
693=(n/2)[2*63+(n-1)*(-3)]
1386= n[126-3n+3]
1386= n[129-3n]
1386=n[129-3n]
3n²-129n+1386=0
√D=√ [(-129)²-4*3*1386] =√9 =3
n=[-b±√D]÷2a
n= [129±3]÷6
n=(129+3)/6 OR n=(129-3)/6
n= 22,,
n=126/6=21
Hence, no of terms may be 22 or 21
Similar questions