Math, asked by rashikack, 2 months ago

How many terms of AP : 9, 17, 25....must be taken to give a sum of 636??​

Answers

Answered by SparklingBoy
13

___________________________

▪Given :-

An A.P. :-

\huge\mathfrak{9, 17, 25.\: .\: . \:.}

___________________________

▪To Find :-

Number of Terms to Get Sum of 636

___________________________

▪Formula for Sum :-

 \bf S_n= \dfrac{ n}{2}  \bigg \{2a +(n-1)d\bigg \}

Where ,

a = First term

n = Number of terms

d = Common difference

___________________________

▪Solution :-

Here

a = 9

d = 8

\sf S_n = 636

Using Formula For Sum :-

 \sf636 =  \dfrac{n}{2}   \bigg\{2(9) + (n - 1)8 \bigg \} \\  \\  \sf1272 =  {n} (18 +8n - 8)  \\  \\  \sf1272 = n(10 + 8n) \\  \\  \sf1272 = 10n +{8n}^{2}  \\  \\  \sf {8n}^{2}  + 10n - 1272 = 0

Dividing whole equation by two :

 \bf {4n}^{2}   + 5n - 636 = 0 \\  \\  \sf  {4n}^{2}  + 53n - 48n - 636 = 0  \\  \\ \sf  n(4n + 53) - 12(4n + 53) = 0 \\  \\  \sf(4n + 53)(n - 12) = 0 \\  \\ \large\purple{ \implies  \underline {\boxed{{\bf n = 12 \:  \: or \:  \: n =  -  \frac{ 53}{4} } }}}

As n is number of terms so it can't be Negative

\Large\purple{ \implies  \underline {\boxed{{\bf n = 12} }}}

Hence ,

12 terms of the given AP should be taken to get A Sum of 636.

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Similar questions