English, asked by shahsiddh3493, 1 year ago

How many terms of the A.P.27,24,21,..... should be taken so that their sum is zero ?

Answers

Answered by ankitabajpai55613
14

A=27

D=24-27=-3

N=?

Sn=0

Sn=n/2[2a+n-1]d

0= n/2[2(27)+(n-1)-3

0=54-3n+3

-54=-3(n-1)

8=n-1

n=9

So,9.terms should be taken.

Answered by Anonymous
5

Answer:

Consider  \: the \:   \: given \:  A.P.  \: series.</p><p> \\ </p><p>27,24,21,......</p><p></p><p> \\ </p><p>Here, a=27,d=−3</p><p></p><p> \\ </p><p>Since, Sum=0</p><p> \\ </p><p></p><p>Therefore,</p><p></p><p>

sum =  \frac{n}{2} [2a + (n - 1)d]

0=  \frac{n}{2} [2 \times 27 + (n - 1) \times  - 3]

54 - 3n  + 3 = 0

57 - 3n = 0

57 = 3n

n =  \frac{ \cancel{ 57}}{ \cancel 3}  = 19

so, \:  \boxed{n = 19}

Similar questions