Math, asked by jthippan007, 11 months ago

how many terms of the AP 18,16,14,...,be taken so that so that their sum is zero​

Answers

Answered by anitas9768
6

Step-by-step explanation:

this is the correct answer

Attachments:
Answered by InfiniteSoul
2

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀⠀⠀

  • Sum = S = 0
  • First term = a = 18
  • Common diff. = d = -2

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀⠀⠀

  • No. of terms = n = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀

\sf{\red{\boxed{\bold{S = \dfrac{n}{2} [ 2a + ( n - 1 ) d ]}}}}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  0 = \dfrac{n}{2} [ 2\times 18 +  ( n - 1 ) - 2 ] }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  0\times 2  = n [ 2\times 18 + ( n - 1 ) - 2 ] }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  0 = n [ 2\times 18 +  ( n - 1 ) - 2 ] }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  0 = n [ 36 + ( n - 1 ) - 2 ] }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  0 = n [ 36 +  ( -2n + 2 )  ] }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  0 = n [ 36 - 2n + 2 ] }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  0 = n[ 38 - 2n ] }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  0 = 38n - 2n^2}}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  2n^2 = 38n }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  n = \dfrac{38n}{2n} }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  n = 19 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

  • sum of First 19 terms of AP is zero
Similar questions