Math, asked by debasak6948, 9 months ago

How many terms of the AP 24 21 18 must be taken so that their sum is 78

Answers

Answered by bhagwant98150
3

Answer:

hope this is helpful.

Attachments:
Answered by sourya1794
78

Given :-

  • a = 24

  • d = 21 - 24 = -3

  • \rm\:S_n= 78

To find :-

  • Number of terms (n) = ?

Solution :-

We know that,

\purple{\bigstar}\:\:{\underline{\boxed{\bf\red{S_n=\dfrac{n}{2}\:[2a+(n-1)d]}}}}

\rm\longrightarrow\:78=\dfrac{n}{2}\:[2\times\:24+(n-1)(-3)]

\rm\longrightarrow\:78=\dfrac{n}{2}\:[48+(n-1)(-3)]

\rm\longrightarrow\:78=\dfrac{n}{2}\:[51-3n]

\rm\longrightarrow\:78\times\:2=51n-3{n}^{2}

\rm\longrightarrow\:156=51n-3{n}^{2}

\rm\longrightarrow\:3{n}^{2}-51n+156=0

\rm\longrightarrow\:3({n}^{2}-17+52)=0

\rm\longrightarrow\:{n}^{2}-17n+52=0

\rm\longrightarrow\:{n}^{2}-13n-4n+52=0

\rm\longrightarrow\:n(n-13)-4(n-13)=0

\rm\longrightarrow\:(n-4)(n-13)=0

Now,

\rm\longrightarrow\:n-4=0

\rm\longrightarrow\:n=0+4

\rm\longrightarrow\:n=4

Then,

\rm\longrightarrow\:n-13=0

\rm\longrightarrow\:n=0+13

\rm\longrightarrow\:n=13

Hence,the number of terms (n) will be either 4 or 13.

Similar questions