How many terms of the AP: 9, 17, 25.
must be taken to a sum of 450
to get
Answers
GiveN :
- AP is 9,17,25.......
To FinD :
- How many terms will be require to make sum as 450.
SolutioN :
We are given that AP is : 9,17,25......
- First term (a) = 9
- Common Difference (d) = 17 - 9 = 8
- Sum of terms (Sn) = 450
Use formula for Sum of AP
⇒Sn = n/2 [2a + (n - 1)d)]
⇒450 = n/2 [2(9) + (n - 1)8]
⇒450 * 2 = n[18 + 8n - 8]
⇒900 = n[8n + 10]
⇒900 = 8n² + 10n
⇒8n² + 10n - 900
Dividing by 2
⇒4n² + 5 - 450 = 0
Now, use method of splitting the middle term
⇒4n² - 40n + 45n - 450 = 0
⇒4n(n - 10) + 45(n - 10) = 0
⇒(n - 10)(4n + 45) = 0
⇒n - 10 = 0 & 4n + 45 = 0
⇒n = 10 & 4n = - 45
⇒n = 10 & n = -45/4
So, there are two values of n : 10 and - 45/4
As number of terms can't be negative. So, take positive values only.
⇒Number of terms = 10
How many terms of the AP: 9, 17, 25.
must be taken to get a sum of 450?
a= 9
d = a2 - a1
d = 17 - 9
d = 8
Sn = 450
Sn = n/2 {2a + (n - 1)d}
→450 = n/2 {2×9 + (n - 1)8}
→900 = n (18 + 8n - 8)
→900 = n (10 + 8n)
→900 = 10n + 8n²
→8n² + 10n - 900 = 0
→4n² + 5n - 450 = 0
→4n² + 45n - 40n - 450 = 0
→n (4n + 45) - 10 (4n + 45) = 0
→(n - 10)(4n + 45) = 0
→n = 10, -45/4
As the number of terms (n) cannot be negative.
Therefore, n = 10