Math, asked by kk0968200, 4 months ago

How many terms of the Arithmetic Progression 45, 39, 33, ... must be

taken so that their sum is 180 ? Explain the double answer.​

Answers

Answered by mathdude500
8

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

Given :-

  • An AP series 45, 39, 33, ....... having sum 180

To find :-

  • number of terms

Formula used

\large\bold\green{Sum  \: of \:  n \:  terms, S_n \:  =  \frac{n}{2}(2a + (n - 1) \times d) }

where,

♡ a = first term of an AP

◇ d = Common Difference of an AP

◇ n = number of terms of an AP

Solution :-

Here,

First term of an AP, a = 45

Common Difference of an AP, d = 39 - 45 = - 6

Sum of terms of an AP = 180

Let number of terms of an AP be 'n'.

Using formula of sum of n terms,

\small\bold\red{Sum \:  of  \: n  \: terms, S_n \:  =  \frac{n}{2}(2a + (n - 1) \times d) }

Substitute the values of a, d, n

\small\bold\red{180 =  \frac{n}{2} (2 \times 45 + (n - 1) \times ( - 6))} \\ \small\bold\red{180  \times 2= n(90 - 6n + 6)} \\ \small\bold\red{ =  > 360 = n(96 - 6n)}

\small\bold\red{ =  > 360 = 6n(16 - n)}  \\ on \: dividing \: b y \: 6 \: on \: both \: sides\\ \small\bold\red{ =  >  \: 60 = 16n -  {n}^{2} } \\ \small\bold\red{ =  >  {n}^{2}  - 16n  + 60 = 0} \\ \small\bold\red{}\small\bold\red{ =  >  {n}^{2} - 10n - 6n + 60 = 0 } \\ \small\bold\red{ =  >  \: n(n - 10) - 6(n - 10) = 0} \\ \small\bold\red{ =  >  \: (n - 10)(n - 6) = 0} \\ \small\bold\red{  =  >  \:  \:  \:  \:  \:  \: n \:  = 10 \:  \:  \:  \: or \:  \:  \:  \:  \: n   = 6\:  \:  \: }

\huge \fcolorbox{black}{cya}{♛Hope it helps U♛}

Similar questions