How maths and physics are interconnected?With examples write your answer around 150 words
Answers
Explanation:
Mathematics is the key to opportunity. No longer just the language of science, mathematics now contributes in direct and fundamental ways to business, finance, health, and defense. For students, it opens doors to careers. For citizens, it enables informed decisions. For nations, it provides knowledge to compete in a technological community. To participate fully in the world of the future, America must tap the power of mathematics. (NRC, 1989, p. 1)
The above statement remains true today, although it was written almost ten years ago in the Mathematical Sciences Education Board's (MSEB) report Everybody Counts (NRC, 1989). In envisioning a future in which all students will be afforded such opportunities, the MSEB acknowledges the crucial role played by formulae and algorithms, and suggests that algorithmic skills are more flexible, powerful, and enduring when they come from a place of meaning and understanding. This volume takes as a premise that all students can develop mathematical understanding by working with mathematical tasks from workplace and everyday contexts. The essays in this report provide some rationale for this premise and discuss some of the issues and questions that follow. The tasks in this report illuminate some of the possibilities provided by the workplace and everyday life.
Page 10
Suggested Citation:"Part One: Connecting Mathematics with Work and Life." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.×
Add a note to your bookmark
Contexts from within mathematics also can be powerful sites for the development of mathematical understanding, as professional and amateur mathematicians will attest. There are many good sources of compelling problems from within mathematics, and a broad mathematics education will include experience with problems from contexts both within and outside mathematics. The inclusion of tasks in this volume is intended to highlight particularly compelling problems whose context lies outside of mathematics, not to suggest a curriculum.
The operative word in the above premise is "can." The understandings that students develop from any encounter with mathematics depend not only on the context, but also on the students' prior experience and skills, their ways of thinking, their engagement with the task, the environment in which they explore the task—including the teacher, the students, and the tools—the kinds of interactions that occur in that environment, and the system of internal and external incentives that might be associated with the activity. Teaching and learning are complex activities that depend upon evolving and rarely articulated interrelationships among teachers, students, materials, and ideas. No prescription for their improvement can be simple.
This volume may be beneficially seen as a rearticulation and elaboration of a principle put forward in Reshaping School Mathematics:
Principle 3: Relevant Applications Should be an Integral Part of the Curriculum.
Students need to experience mathematical ideas in the context in which they naturally arise—from simple counting and measurement to applications in business and science. Calculators and computers make it possible now to introduce realistic applications throughout the curriculum.
The significant criterion for the suitability of an application is whether it has the potential to engage students' interests and stimulate their mathematical thinking. (NRC, 1990, p. 38)
Mathematical problems can serve as a source of motivation for students if the problems engage students' interests and aspirations. Mathematical problems also can serve as sources of meaning and understanding if the problems stimulate students' thinking. Of course, a mathematical task that is meaningful to a student will provide more motivation than a task that does not make sense. The rationale behind the criterion above is that both meaning and motivation are required. The motivational benefits that can be provided by workplace and everyday problems are worth mentioning, for although some students are aware that certain mathematics courses are necessary in order to gain entry into particular career paths, many students are unaware of how particular topics or problem-solving approaches will have relevance in any workplace. The power of using workplace and everyday problems to teach mathematics lies not so much in motivation, however, for no con-