How mattalic bonding accounts for the common properties of mettals
Answers
Explanation:
Metallic bonds are seen in pure metals and alloys and some metalloids. For example, graphene (an allotrope of carbon) exhibits two-dimensional metallic bonding. Metals, even pure ones, can form other types of chemical bonds between their atoms. For example, the mercurous ion (Hg22+) can form metal-metal covalent bonds. Pure gallium forms covalent bonds between pairs of atoms that are linked by metallic bonds to surrounding pairs.
How Metallic Bonds Work
The outer energy levels of metal atoms (the s and p orbitals) overlap. At least one of the valence electrons participating in a metallic bond is not shared with a neighbor atom, nor is it lost to form an ion. Instead, the electrons form what may be termed an "electron sea" in which valence electrons are free to move from one atom to another.
The electron sea model is an oversimplification of metallic bonding. Calculations based on electronic band structure or density functions are more accurate. Metallic bonding may be seen as a consequence of a material having many more delocalized energy states than it has delocalized electrons (electron deficiency), so localized unpaired electrons may become delocalized and mobile. The electrons can change energy states and move throughout a lattice in any direction
Explanation:
metallic bonding is responsible for the similar characteristics because of shared electrons and size of atoms