Math, asked by SurjidaKumar, 11 months ago

How much percent more than C.P should a manufacturer mark his goods so that after allowing discount of 20% on marked price,he gains 10%? ​

Answers

Answered by StarrySoul
67

Solution :

Let the Cost price be Rs 100

Gain percent required = 10%

\therefore S.P = Rs(100+10) = Rs 110

Discount allowed = 20%

Let the Marked Price be x. Then,

 \sf \: Discount = 20\% \: of \: x

 \hookrightarrow \sf \:  (\dfrac{20}{100}  \times x) = Rs \:  \dfrac{x}{5}

  \boxed{\rm \: S.P =  M.P  - Discount}

 \hookrightarrow \sf \:  Rs (x -  \dfrac{x}{5} ) = Rs \:  \dfrac{4x}{5}

But,S.P = Rs 110

 \therefore \sf \:  \dfrac{4x}{5}  = 110

 \hookrightarrow \sf \: x =   \dfrac{550}{4}

 \sf \: x =  \large \boxed{ \sf Rs \: 137.50}

Hence,the manufacturer should mark 37.50% more than C.P

Aliter :

Let the C.P be Rs x

Gain = 10%

 \boxed{\rm \: S.P = ( \dfrac{100 + Gain\%}{100}  ) \times C.P}

 \hookrightarrow \sf \: S.P  = Rs( \dfrac{100 + 10}{100} \times x)

 \hookrightarrow \sf \: S.P  = Rs \:  \dfrac{11x}{10}

Now,

S.P. = Rs 11x/10

Discount = 20%

 \sf \:  \boxed { \rm \: \: M.P =   \dfrac{100 \times S.P}{100 -Discount }  }

 \hookrightarrow \sf \: M.P  = Rs \: ( \dfrac{100 \times  \dfrac{11x}{10} }{100 - 20} )

 \hookrightarrow \sf \: M.P  = Rs \:  \dfrac{11x}{8}

 \boxed{ \rm \: Req. \: \% =   \frac{M.P -  C.P}{C.P}  \times 100}

 \hookrightarrow \sf \:    \dfrac{ \dfrac{11x}{8}  - x}{x}  \times 100

 \hookrightarrow \sf \:     \dfrac{3}{8}  \times 100

=  \large \boxed{ \sf  \: 37.5\%}

Answered by Anonymous
45

\bf{\Huge{\boxed{\rm{\green{ANSWER\::}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

A manufacturer mark his goods so that after allowing discount of 20% on marked price, he gains 10%.

\bf{\Large{\underline{\bf{To\:find\::}}}}}

The percent more than C.P.

\bf{\Large{\underline{\rm{\pink{Explanation\::}}}}}

We know that formula of the marked Price,[M.P.]

\leadsto\sf{\orange{M.P.\:=\:\frac{100*S.P.}{100-discount\%}} }

Let the Cost Price,[C.P.] be Rs.100

Therefore,

\longmapsto\tt{Selling\:price,[S.P.]\:=\:C.P.*(\frac{100+gain\%}{100} )}

\longmapsto\tt{S.P.\:=\:100*(\frac{100+10}{100}) }

\longmapsto\tt{S.P.\:=\:100*\frac{110}{100} }

\longmapsto\tt{S.P.\:=\:\cancel{100}*\frac{110}{\cancel{100}} }

\longmapsto\tt{\orange{S.P.\:=\:Rs.110}}

Now,

\leadsto\rm{Marked\:price,[M.P.]\:=\:\frac{100*S.P.}{100-Discount\%} }

\leadsto\rm{M.P.\:=\:\frac{100*110}{100-20} }

\leadsto\rm{M.P.\:=\:\cancel{\frac{11000}{80} }}

\leadsto\rm{\orange{M.P.\:=\:Rs.137.5}}

______________________________________________

\mapsto\sf{Above\%\:=\:\frac{M.P.-C.P.}{100} *100}

\mapsto\sf{Above\%\:=\:\frac{137.5-100}{100} *100}

\mapsto\sf{Above\%\:=\:\frac{137.5-100}{\cancel{100}} *\cancel{100}}

\mapsto\sf{Above\%\:=\:137.5\:-\:100}

\mapsto\sf{\orange{Above\%\:=\:37.5\%}}

Similar questions