Physics, asked by airi, 7 months ago

how to differentiate this wrt t
(√2a+2ut).[√(a²-(a/√2+ut)²)]
.
.
.
.
.
.
.
.plzz solve this

Attachments:

Answers

Answered by dna63
1

Explanation:

\sf{\frac{d}{dt}[(\sqrt{2}a+ut).(\sqrt{a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}}\:)]}

Using chain rule,,

\boxed{\sf{\frac{d}{dx}(uv)=u\frac{d}{dx}(v)+v\frac{d}{dx}(u)}}

We get,,

\sf{\frac{d}{dt}[(\sqrt{2}a+ut).(\sqrt{a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}}\:) ]}

\sf{=(\sqrt{2}a+ut)\frac{d}{dt}(\sqrt{a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}}\:)+(\sqrt{a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}}\:)\frac{d}{dt}(\sqrt{2}a+ut)}

\sf{=(\sqrt{2}a+ut)\frac{d}{dt}(a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}\:)^\frac{1}{2}+(\sqrt{a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}}\:)[\frac{d}{dt}(\sqrt{2}a)+\frac{d}{dt}(ut)]}

\sf{=(\sqrt{2}a+ut).\frac{1}{2}(a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}\:)^\frac{-1}{2}+(\sqrt{a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}}\:)[0+u\frac{d}{dt}(t)]}

\sf{=\frac{\frac{1}{2}(\sqrt{2}a+ut)}{(a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}\:)^\frac{1}{2}}+(\sqrt{a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}}\:)[0+u(1)]}

\sf{=\frac{\frac{1}{2}(\sqrt{2}a+ut)}{(a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}\:)^\frac{1}{2}}+(a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}\:)^{\frac{1}{2}}[u]}

\sf{=\frac{\frac{1}{2}(\sqrt{2}a+ut)+(a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}\:)[u]}{(a^{2}-(\frac{a}{\sqrt{2}}+ut)^{2}\:)^{\frac{1}{2}}}}

Similar questions