Math, asked by Krishnanunni2586, 11 months ago

How to find coefficient term of independent of x of the expansion (x^1/12+x^-1/9)^14?

Answers

Answered by Sharad001
69

QuesTion:-

 \sf \red{ find \: the \: coefficient \: of \: term \: independent} \\  \sf  \green{of \: x \: in \: the \: expansion} \: of \:  {  \big({x}^{ \frac{1}{12}  }  +  {x}^{ \frac{ - 1}{9} } \big) }^{14}  \\

Answer:-

 \to \sf \: 3003 \:  \: or \:  \:  \: ^{14}C_{6} \:

To Find :-

→ Term independent of x

Explanation :-

We have ,

 \to \sf \: {  \big({x}^{ \frac{1}{12}  }  +  {x}^{ \frac{ - 1}{9} } \big) }^{14}  \\ \\   \sf term \: independent \: of \: x \: means \: the \: term \:   \\ \sf which \: is \: not \: depend \: on \: x \: ( {x}^{0})  \\  \bf \: hence \\  \\  \because  \sf \: for \: coefficient \: of \: x \:  \:  \{ ^{n}C_{r} \:  {a}^{n - r}  {x}^{r}  \} \\  \\  \to \sf ^{14}C_{r} \:  {( {x}^{ \frac{1}{12} } )}^{14 - r}  { {(x)}^{ \frac{ - 1}{9} } }^{r}  \\  \\  \to \: \sf ^{14}C_{r} \:  {( {x}^{  } )}^{ (\frac{14 - r}{12} )}  { {(x)}^{ (\frac{ - r}{9}) } }^{}   \:  \\  \\  \to \: \sf ^{14}C_{r} \:  {(x)}^{( \frac{14 - r}{12}  -  \frac{r}{9} )}  \\  \\ \sf for \: term \: independent \: of \: x \\  \\  \to \sf  \frac{14 - r}{12}  -  \frac{r}{9}  = 0 \\  \\  \to \sf  \frac{14 - r}{12}  =  \frac{r}{9}  \\  \\  \to \sf 12r = 126 - 9r \\  \\  \to \sf \: 21r = 126 \\  \\  \to  \boxed{\sf r = 6} \\  \\  \sf \: hence \: coefficient \: of \:  {x}^{0}  \: is \:  -  \\  \\  \to \: \sf ^{14}C_{6} \:  {x}^{0}  \\  \\  \to \: ^{14}C_{6} \:  \\  \\  \to \:  \frac{14 \times 13 \times 12 \times 11 \times 10 \times 9 }{6 \times 5 \times 4 \times 3 \times 2 \times 1}  \\  \\  \to \: 3003

Hope it helps you .

Similar questions