How to find perimeter of a triangle if area is given using heron's formula
Answers
Answered by
0
A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side 'a'. Find the area of the signal board, using Heron’s formula. If its perimeter is 180 cm, what will be the area of the signal board?
Answer
Length of the side of equilateral triangle = a
Perimeter of the signal board = 3a = 180 cm
∴ 3a = 180 cm ⇒ a = 60 cm
Semi perimeter of the signal board (s) = 3a/2
Using heron's formula,
Area of the signal board = √s (s-a) (s-b) (s-c)
= √(3a/2) (3a/2 - a) (3a/2 - a) (3a/2 - a)
= √3a/2 × a/2 × a/2 × a/2
= √3a4/16
= √3a2/4
= √3/4 × 60 × 60 = 900√3 cm2
Answer
Length of the side of equilateral triangle = a
Perimeter of the signal board = 3a = 180 cm
∴ 3a = 180 cm ⇒ a = 60 cm
Semi perimeter of the signal board (s) = 3a/2
Using heron's formula,
Area of the signal board = √s (s-a) (s-b) (s-c)
= √(3a/2) (3a/2 - a) (3a/2 - a) (3a/2 - a)
= √3a/2 × a/2 × a/2 × a/2
= √3a4/16
= √3a2/4
= √3/4 × 60 × 60 = 900√3 cm2
Similar questions