how to identify congruence triangles . State all conditions
Answers
Answered by
0
by following rules
SSS
ASA
SAS
here S=side
A=angle
SSS
ASA
SAS
here S=side
A=angle
VibhorPal:
bhai also by RHS ,AAS
Answered by
1
Side-Angle-Side (SAS)
This criterion for triangle congruence is one of our axioms. So we do not prove it but use it to prove other criteria.
Using words:
If two sides in one triangle are congruent to two sides of a second triangle, and also if the included angles are congruent, then the triangles are congruent.
Using labels:
If in triangles ABC and DEF, AB = DE, AC = DF, and angle A = angle D, then triangle ABC is congruent to triangle DEF.
Side- Side-Side (SSS)
Using words:
If 3 sides in one triangle are congruent to 3 sides of a second triangle, then the triangles are congruent.
Using labels:
If in triangles ABC and DEF, AB = DE, BC = EF, and CA = FD, then triangle ABC is congruent to triangle DEF.
Proof: This was proved by using SAS to make "copies" of the two triangles side by side so that together they form a kite, including a diagonal. Then using what was proved about kites, diagonal cuts the kite into two congruent triangles.
Details of this proof are at this link. The similarity version of this proof is B&B Principle 8.
Angle-Side-Angle (ASA)
Using words:
If two angle in one triangle are congruent to two angles of a second triangle, and also if the included sides are congruent, then the triangles are congruent.
Using labels:
If in triangles ABC and DEF, angle A = angle D, angle B = angle E, and AB = DE, then triangle ABC is congruent to triangle DEF.
Proof: This proof was left to reading and was not presented in class. Again, one can make congruent copies of each triangle so that the copies share a side. Then one can see that AC must = DF.
Hypotenuse-Leg (HL) for Right Triangles
There is one case where SSA is valid, and that is when the angles are right angles.
Using words:
In words, if the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the triangles are congruent.
Using labels
If in triangles ABC and DEF, angle A = angle D = right angle, AB = DE (leg), and BC = EF (hypotenuse), then triangle ABC is congruent to triangle DEF.
Proof:
The proof of this case again starts by making congruent copies of the triangles side by side so that the congruent legs are shared. The resulting figure is an isosceles triangle with altitude, so the two triangles are congruent.
_____________
hope helps
This criterion for triangle congruence is one of our axioms. So we do not prove it but use it to prove other criteria.
Using words:
If two sides in one triangle are congruent to two sides of a second triangle, and also if the included angles are congruent, then the triangles are congruent.
Using labels:
If in triangles ABC and DEF, AB = DE, AC = DF, and angle A = angle D, then triangle ABC is congruent to triangle DEF.
Side- Side-Side (SSS)
Using words:
If 3 sides in one triangle are congruent to 3 sides of a second triangle, then the triangles are congruent.
Using labels:
If in triangles ABC and DEF, AB = DE, BC = EF, and CA = FD, then triangle ABC is congruent to triangle DEF.
Proof: This was proved by using SAS to make "copies" of the two triangles side by side so that together they form a kite, including a diagonal. Then using what was proved about kites, diagonal cuts the kite into two congruent triangles.
Details of this proof are at this link. The similarity version of this proof is B&B Principle 8.
Angle-Side-Angle (ASA)
Using words:
If two angle in one triangle are congruent to two angles of a second triangle, and also if the included sides are congruent, then the triangles are congruent.
Using labels:
If in triangles ABC and DEF, angle A = angle D, angle B = angle E, and AB = DE, then triangle ABC is congruent to triangle DEF.
Proof: This proof was left to reading and was not presented in class. Again, one can make congruent copies of each triangle so that the copies share a side. Then one can see that AC must = DF.
Hypotenuse-Leg (HL) for Right Triangles
There is one case where SSA is valid, and that is when the angles are right angles.
Using words:
In words, if the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the triangles are congruent.
Using labels
If in triangles ABC and DEF, angle A = angle D = right angle, AB = DE (leg), and BC = EF (hypotenuse), then triangle ABC is congruent to triangle DEF.
Proof:
The proof of this case again starts by making congruent copies of the triangles side by side so that the congruent legs are shared. The resulting figure is an isosceles triangle with altitude, so the two triangles are congruent.
_____________
hope helps
Similar questions