How to prove (1+sin2A)/(cos2A)=(cosA+sinA)/(cosA-sinA)
Answers
Answered by
3
LHS=(1+sin2A)/(cos2A)
=(sin^2A+cos^2A+2sinAcosA)/(cos^2A-sin^2A)
=[(sinA+cosA)^2]/(cos^2A-sin^2A)
=(sinA+cosA)^2/(cosA+sinA)(cosA-sinA)
=(sinA+cosA)/(cosA-sinA)=RHS
=(sin^2A+cos^2A+2sinAcosA)/(cos^2A-sin^2A)
=[(sinA+cosA)^2]/(cos^2A-sin^2A)
=(sinA+cosA)^2/(cosA+sinA)(cosA-sinA)
=(sinA+cosA)/(cosA-sinA)=RHS
Similar questions
History,
8 months ago
History,
8 months ago
Math,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago