Math, asked by nasirabdul3607, 1 year ago

How to prove demorgan theorem algebricaly?

Answers

Answered by sham13
2
Formal Proof of DeMorgan's Theorems

DeMorgan's Theorems: 
a. (A + B) = A* B 
b. A*B = A + B 
Note: * = AND operation

Proof of DeMorgan's Theorem (b): 
For any theorem X=Y, if we can show that X Y = 0, and that X + Y = 1, then 
by the complement postulates, A A = 0 and A + A = 1, 
X = Y. By the uniqueness of the complement, X = Y. 
Thus the proof consists of showing that (A*B)*(A + B) = 0; and also that (A*B) + ( A + B) = 1.

Prove:(A*B)*(A + B)=0(A*B)*(A + B)=(A*B)*A + (A*B)*B)by distributive postulate=(A*A)*B + A*(B*B)by associativity postulate=0*B + A*0by complement postulate=0 + 0by nullity theorem=0by identity theorem(A*B)*(A + B)=0Q.E.D.

Prove:(A*B) + ( A +B)=1(A*B) + ( A +B)=(A + A +B))*(B + A +B)by distributivity B*C + A = (B + A)*(C + A)(A*B) + ( A +B)=(A + A +B))*(B + B +A)by associativity postulate=(1 + B)*(1 + A)by complement postulate=1*1by nullity theorem=1by identity theorem(A*B) + ( A +B)=1Q.E.D.

Similar questions