Math, asked by caleblam3, 1 year ago

How to prove sec2x-sec2y = tan2x-tan2y

Answers

Answered by karmanyagupta1421
1

 \sec( {x}^{2} )  -  \sec( {y}^{2} )  =  \tan( {x}^{2} )  -   \tan( {y}^{2} )  \\  \sec( {x}^{2} )  -  \tan( {x}^{2} )  =  \sec( {y}^{2} )  -  \tan( {y}^{2} )  \\  \frac{1}{ \cos( {x}^{2} ) }  -  \frac{ \sin( {x}^{2} ) }{ \cos( {x}^{2} ) }  =  \frac{1}{ \cos( {y}^{2} ) }  -  \frac{ \sin( {y}^{2} ) }{ \cos( {y}^{2} ) }  \\  \frac{1 -  \sin( {x}^{2} ) }{ \cos( {x}^{2} ) }  =  \frac{1 -  \sin( {y}^{2} ) }{ \cos( {y }^{2} ) }  \\   \frac{ \cos( {x}^{2} ) }{ \cos( {x}^{2} ) }  =  \frac{ \cos( {y}^{2} ) }{ \cos( {y}^{2} ) }  \\ 1 = 1

hope it hepls you

Similar questions