Math, asked by komathimadhavan1, 4 months ago

How to prove the above using trigonometric identities​

Attachments:

Answers

Answered by nl829395
1

Answer:

Step-by-step explanation:

to prove - \frac{sin A - 2sin^{3} A }{2cos^{3} A - cosA } = tanA

LHS = \frac{sin A - 2sin^{3} A }{2cos^{3} A - cosA }

divide the all ratios by cosA we get,

                       \frac{tanA - 2tanAsin^{2} A }{2cos^{2} A - 1 }

                  =  \frac{tanA(1-2sin^{2} A)}{2(1-sin^{2} A)-1}

                  = \frac{tanA(1-2sin^{2} A)}{1-2sin^{2} A}

                  = tanA hence prove

if you don't understand ask me again i will explain this in detail ok

Similar questions