Math, asked by puttusujana, 1 year ago

how to prove this? ​

Attachments:

Answers

Answered by Anonymous
4

Here ,

LHS=

( \frac{1  + sin \alpha  - cos \alpha }{1 + sin \alpha  + cos \alpha } ) ^{2}  \\  \\  =  (\frac{1   -  cos \alpha   + sin \alpha }{1   + cos \alpha  + sin \alpha } ) ^{2}   \\  \\ we \: know \: that \:  \:  \:  \:  \:  \: 1 - cosx \:  = 2 {sin}^{2}  \frac{x}{2}  \:  \\ and  \:  \: \: 1 + cosx \:  = 2 {cos}^{2}  \frac{x}{2}  \:   \:  \: \: and \:  \:  \:  \: sinx \:  = 2sin \frac{x}{2} cos \frac{x}{2}  \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ................................(1) \\  \\ so \: now \\  \\  = ( \frac{2 {sin}^{2} \frac{ \alpha }{2}  + 2sin \frac{ \alpha }{2}cos \frac{ \alpha }{2}   }{2 {cos}^{2} \frac{ \alpha }{2}   + 2sin \frac{ \alpha }{2}cos \frac{ \alpha }{2} } )^{2}  \\  \\  =  [ \frac{2sin \frac{ \alpha }{2}(sin \frac{ \alpha }{2}  + cos \frac{ \alpha }{2}  )}{2cos \frac{ \alpha }{2}( sin \frac{ \alpha }{2}  + cos \frac{ \alpha }{2}  )} ] ^{2}  \\  \\  = ( \frac{sin \frac{ \alpha }{2} }{cos \frac{ \alpha }{2} } ) ^{2}  \\  \\  =  \frac{ {sin}^{2} \frac{ \alpha }{2}  }{ {cos}^{2} \frac{ \alpha }{2}  }  \\  \\  now \: as \: per \: equation \: (1) \\  \\  =  \frac{( \frac{1 - cos \alpha }{2} )}{( \frac{1 + cos \alpha }{2} )}  \\  \\  =  \frac{1 - cos \alpha }{1  +  cos \alpha }

= RHS

hope it helps......

● keep smiling &

always shining.............:-)

Similar questions