Math, asked by Anonymous, 3 months ago

How to solve above question

TRY TO HELP ME GUYS ​

Attachments:

Answers

Answered by assingh
41

Topic :-

Coordinate Geometry

Given :-

Area of the triangle formed by

(0,0),(a^{x^2},0)\;and\;(0,a^{6x})\;is\;\dfrac{1}{2}a^5\;sq.\;units.

To Find :-

Value of 'x'.

Concept Used :-

Area\:of\:triangle\:formed\:by\:(x_1,y_1),(x_1,y_1)\:and\:(x_3,y_3)\:is

\dfrac{1}{2}\left | x_1y_2-x_2y_1+x_2y_3-x_3y_2+x_3y_1-x_1y_3 \right |

Solution :-

Coordinates of given triangle are :-

(x_1,y_1) \equiv (0,0)

(x_2,y_2) \equiv (a^{x^2},0)

(x_3,y_3) \equiv (0,a^{6x})

Apply formula of Area of Triangle :-

Area=\dfrac{1}{2}\left | (0)(0)-(a^{x^2})(0)+(a^{x^2})(a^{6x})-(0)(0)+(0)(0)-(0)(a^{6x}) \right |

Area=\dfrac{1}{2}\left | (a^{x^2})(a^{6x}) \right |

Area=\dfrac{1}{2}\left | (a^{x^2+6x}) \right |

(\because x^m \times x^n = x^{m+n} )

Area=\dfrac{1}{2}a^5

\dfrac{1}{2}\left | (a^{x^2+6x}) \right |=\dfrac{1}{2}a^5

\left | (a^{x^2+6x}) \right |=a^5

Squaring both sides,

\left | (a^{x^2+6x}) \right |^2=(a^5)^2

a^{2x^2+12x}=a^{10}

(\because (x^m)^n = x^{mn})

On comparing powers,

2x^2+12x=10

x^2+6x-5=0

x^2+6x+9-9-5=0

(x+3)^2-14=0

(x+3)^2=14

Taking square root both sides,

x+3=\pm \sqrt{14}

x=-3\pm \sqrt{14}

Answer :-

So, possible value of x is :-

  • -3 + √(14) or
  • -3 - √(14)

Hence, none of the option is correct.


MagicalBeast: Nice!
Asterinn: Perfect!
Answered by diajain01
67

{\boxed{\underline{\tt{\orange{Required  \:  \: answer:-}}}}}

1st PART :-

If the area taken as a^5/2

None of these options

★GIVEN:-

  • \displaystyle \sf{(0,0)}
  • \displaystyle \sf{( {a}^{ {x}^{2},0} )}
  • \displaystyle \sf{({0, {a}^{6x} } )}
  • Area = a^5/2

★TO FIND:-

  • x?

★FORMULA USED:-

  • \displaystyle \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}}

★SOLUTION:-

\displaystyle \sf{ \frac{{a}^{5}}{2}   =  \frac{1}{2}  \times ( {a}^{ {x}^{2}  } )( {a}^{6x})}

:   \longrightarrow\displaystyle \sf{ {a}^{ {x}^{2}  + 6x} =  {a}^{5}  }

ON COMPARING:-

:   \longrightarrow\displaystyle \sf{  {x }^{2}   + 6x = 5}

:   \longrightarrow\displaystyle \sf{  {x }^{2}   + 6x  -  5 = 0}

\displaystyle \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}}

  • a = 1

  • b = 6

  • c = -5

:  \longrightarrow  \displaystyle \sf{x =  \frac{ - 6 \pm \sqrt{ {6}^{2}  - 4.1( - 5)} }{2.1} }

:  \longrightarrow  \displaystyle \sf{x =   \frac{ - 6 \pm2 \sqrt{14} }{2} }

:  \longrightarrow  \displaystyle \sf{x =   \frac{ - 6 + 2 \sqrt{14} }{2}  } \sf{and} \:   \displaystyle \sf{x =   \frac{ - 6  -  2 \sqrt{14} }{2}  }

:  \longrightarrow  \displaystyle { \boxed{\sf{x =  - 3 +  \sqrt{14}}}  }  \:  \:  \: \sf{and} \:  \:  \:  \displaystyle{ \boxed{ \sf{x  =  - 3 -  \sqrt{14} }}}

NONE OF THESE OPTION IS THE ANSWER.

__________________________________________✿

2nd PART:-

IF THE AREA IS 1/2a^5

 \displaystyle \sf{d.)  \: -1  \: or \:  -5}

★GIVEN:-

Three points:-

  •  \displaystyle \sf{(0,0)}
  •  \displaystyle \sf{( {a}^{ {x}^{2},0} )}
  • \displaystyle \sf{({0, {a}^{6x} } )}
  • Area = 1/2a^5

★TO FIND:-

  • x?

★FORMULA USED:-

 \displaystyle \sf{Area = \frac{1}{2} [x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]}

★SOLUTION:-

Put the values in the formula:-

 :  \longrightarrow \displaystyle \sf{ \frac{1}{ {2a}^{5} } = \frac{1}{2} [0 + {a}^{ {x}^{2} }( {a}^{6x} - 0) + 0  ]}

 :  \longrightarrow \displaystyle \sf{ \frac{1}{ {a}^{5} } =  {a}^{ {x}^{2} . } . {a}^{6x} =  {a}^{ {x}^{2}  + 6x}  }

 :  \longrightarrow \displaystyle \sf{ {a}^{ - 5} =  {a}^{ {x}^{2} + 6x }  }

ON COMPARING:-

 :  \longrightarrow \displaystyle \sf{ - 5 =  {x}^{2} + 6x }

 :  \longrightarrow \displaystyle \sf{ {x}^{2}  + 6x + 5 = 0}

 :  \longrightarrow \displaystyle \sf{(x + 1)(x + 5) = 0}

{ \boxed{ \underline{ \huge{ \pink{ \sf{ \bf{x \:  =  - 1 \: and \:  - 5}}}}}}}

Therefore, the answer is -1 , -5.


Asterinn: Nice!
Similar questions