Math, asked by maha22062001, 10 months ago

how to solve if 3sinx+4cosx=√17 find the value of 3cosx-4sinx​

Answers

Answered by abhinavsingh02
1

Answer:

Answer is 2root2

2 \sqrt[]{2}

Step-by-step explanation:

PLS MARK IT AS BRAINLIEST

Attachments:
Answered by harendrachoubay
0

The value of 3\cos x-4\sin x​= 2\sqrt{2}

Step-by-step explanation:

We have,

3\sin x+4\cos x=\sqrt{17}                 ..........(1)

Let 3\cos x-4\sin x​=a             ..........(2)

To  find,  the value of 3\cos x-4\sin x​= ?

Squaring and adding equations (1) and (2), we get

(3\sin x+4\cos x)^2+(3\cos x-4\sin x​)^2=(\sqrt{17})^2+a^2

9\sin^2 x+16\cos^2 x+12\cos x\sin x​+9\sin^2 x+16\cos^2 x-12\cos x\sin x=17+a^2

9\sin^2 x+16\cos^2 x​+9\sin^2 x+16\cos^2 x=17+a^2

9(\sin^2 x+\cos^2 x)​+16(\sin^2 x+\cos^2 x)=17+a^2

Using the trigonometric identity,

\sin^2 A+\cos^2 A=1

9(1)​+16(1)=17+a^2

25=17+a^2

a^2=25-17=8

a^2=(2\sqrt{2})^2

⇒ a = 2\sqrt{2}

Thus,  the value of 3\cos x-4\sin x​= 2\sqrt{2}

Similar questions