Math, asked by kasarlaramyasri, 10 months ago

how to solve sec A +tanA=3=secA​

Attachments:

Answers

Answered by abhi569
2

Answer:

1

Step-by-step explanation:

Given,

         α + β = 180( in degree )

⇒ α = 180 - β        

⇒ sinα = sin( 180 - β )

⇒ sinα = sinβ           { using sin( π - B ) = sinB }

⇒ sin^2 α = sin^2 β            ....( 1 )

Therefore,

⇒ sin^2 α + cos^2 β

⇒ sin^2 β + cos^2 β          { from ( 1 ) }

⇒ 1                      { we know, sin^2 A + cos^2 A = 1 }

Answered by Anonymous
4

Step-by-step explanation:

GIVEN:

\alpha and \beta are supplementary.

I. e. \alpha +\beta=180°

TO FIND:

sin^{2}\alpha + cos^{2}\beta

SOLUTION:

=>\alpha +\beta=180°

=>\alpha=180°-\beta

On using sin both sides,

=>sin\alpha=sin(180°-\beta)

\large\green{\boxed{sin(180°-\theta)=sin\theta) }}

=>sin\alpha=sin\beta

On squaring both sides,

=>sin^{2}\alpha=sin^{2}\beta

...............(1)

________________________________

Now,

=sin^{2}\alpha + cos^{2}\beta

=sin^{2}\beta+cos^{2}\beta

(using equation1)

=\large\red{\boxed{sin^{2}\theta+cos^{2}\theta=1}}

=1

\huge\orange{\boxed{ANSWER:1}}

Similar questions