Math, asked by Urvi626, 7 months ago

How to solve the 122 question in the picture? ​

Attachments:

Answers

Answered by tyrbylent
0

Answer:

{0°, 30°}

Step-by-step explanation:

2cos² β + sin β - 2 = 0

2cos²β + sin β - 2(sin²β + cos²β) = 0

sin β - 2sin²β = 0

(sin β)( 1 - 2sin β) = 0

If sin β = 0 , then β = 0°

If (1 - 2sin β) = 0 , then

2sin β = 1

sin β = 1/2 , then β = 30° = π/6

Attachments:
Answered by carrompooltoofan
1

Answer:

GIven:

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

(5

0

+

3

2

)

=(0.6)

2

−3x

To FInd:

The value of x

Solution:

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

(5

0

+

3

2

)

=(0.6)

2

−3x

Rewriting 5⁰ = 1:

\sqrt{ \bigg(1 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

(1+

3

2

)

=(0.6)

2

−3x

\sqrt{ \dfrac{5}{3} }= (0.6)^2 - 3x

3

5

=(0.6)

2

−3x

Rationalise the LHS by multiplying √3/√3:

\dfrac{\sqrt{15} }{3} = (0.6)^2 - 3x

3

15

=(0.6)

2

−3x

Rewriting (0.6)² as a fraction:

\dfrac{\sqrt{15} }{3} = \bigg( \dfrac{6}{10} \bigg)^2 - 3x

3

15

=(

10

6

)

2

−3x

\dfrac{\sqrt{15} }{3} = \dfrac{9}{25} - 3x

3

15

=

25

9

−3x

Multiply both sides by 3:

\sqrt{15} = \dfrac{27}{25} - 9x

15

=

25

27

−9x

Find x:

9x = \dfrac{27}{25} - \sqrt{15}9x=

25

27

15

9x = \dfrac{27 - 25\sqrt{15} }{25}9x=

25

27−25

15

Dividing both sides by 9:

x = \dfrac{27 - 25\sqrt{15} }{225}x=

225

27−25

15

Similar questions