Math, asked by Jismj, 6 months ago

How to solve the above question?​

Attachments:

Answers

Answered by Anonymous
4

SOLUTION :

 \sf \frac{3 \sqrt{2}  - 2 \sqrt{3} }{3 \sqrt{2}  + 2 \sqrt{3} }  +  \frac{ \sqrt{12} }{ \sqrt{3}  -  \sqrt{2} }  \\

 \sf \implies \:  \frac{(3 \sqrt{2}  - 2 \sqrt{3})(3 \sqrt{2}   - 2 \sqrt{3}) }{(3 \sqrt{2} + 2 \sqrt{3} ) (3 \sqrt{2}  - 2 \sqrt{3}) }  +  \frac{ \sqrt{12} ( \sqrt{3} +  \sqrt{2})  }{( \sqrt{3}  -  \sqrt{2} )( \sqrt{3} +  \sqrt{2} ) }  \\

 \sf \implies \:  \frac{ {(3 \sqrt{2}  - 2 \sqrt{3}) }^{2} }{ {(3 \sqrt{2}) }^{2} -  {(2 \sqrt{3} )}^{2}  }  +  \frac{ \sqrt{12} ( \sqrt{3}  +  \sqrt{2} )}{ {( \sqrt{3})}^{2} -  { (\sqrt{2} )}^{2}  }   \\

 \sf \implies \:  \frac{18 + 12 - 12 \sqrt{6} }{6}  +  \sqrt{36}  +  \sqrt{24}  \\

 \sf \implies \:  5 - 12 \sqrt{6}  +  6 +  \sqrt{24}

 \sf \implies \:11 - 10 \sqrt{6}

Similar questions