Math, asked by ningpnrg, 6 months ago

How to solve the homogeneous differential equation (2xy+3y^2)dx-(2xy+x^2)dy=0

Answers

Answered by suman8615
0

Answer:

this is correct..............................

Attachments:
Answered by Manmohan04
6

Given,

\[\left( {2xy + 3{y^2}} \right)dx - \left( {2xy + {x^2}} \right)dy = 0\]

Solution,

Rewrite the given homogeneous differential equation.

\[ \Rightarrow \frac{{dy}}{{dx}} = \frac{{2xy + 3{y^2}}}{{2xy + {x^2}}} -  -  -  - \left( 1 \right)\]

\[Put,y = vx\]

\[\frac{{dy}}{{dx}} = v + x\frac{{dv}}{{dx}}\]

Put it in equation 1.

\[ \Rightarrow v + x\frac{{dv}}{{dx}} = \frac{{2x\left( {vx} \right) + 3{{\left( {vx} \right)}^2}}}{{2x\left( {vx} \right) + {x^2}}}\]

\[ \Rightarrow x\frac{{dv}}{{dx}} = \frac{{2v{x^2} + 3{v^2}{x^2}}}{{2v{x^2} + {x^2}}} - v\]

Solve to separate the variables.

\[ \Rightarrow x\frac{{dv}}{{dx}} = \frac{{2v + 3{v^2}}}{{2v + 1}} - v\]

\[ \Rightarrow x\frac{{dv}}{{dx}} = \frac{{2v + 3{v^2} - 2{v^2} - v}}{{2v + 1}}\]

\[ \Rightarrow x\frac{{dv}}{{dx}} = \frac{{{v^2} + v}}{{2v + 1}}\]

\[ \Rightarrow \frac{{\left( {2v + 1} \right)dv}}{{\left( {{v^2} + v} \right)}} = \frac{{dx}}{x} -  -  -  - \left( 2 \right)\]

\[\begin{array}{l}Take,t = {v^2} + v\\dt = \left( {2v + 1} \right)dv\end{array}\]

Put in equation 2 and integrate.

\[ \Rightarrow \int {\frac{{dt}}{t}}  = \int {\frac{{dx}}{x}} \]

\[ \Rightarrow \ln t = \ln x + \ln c\]

\[ \Rightarrow t = xc\]

Put value of t.

\[ \Rightarrow {v^2} + v = xc\]

Put value of v.

\[ \Rightarrow {\left( {\frac{y}{x}} \right)^2} + \left( {\frac{y}{x}} \right) = xc\]

\[ \Rightarrow {y^2} + xy - {x^3}c = 0\], where c is an arbitrary constant.

Hence the solution of homogeneous differential equation is \[{y^2} + xy - {x^3}c = 0\]

Similar questions