Math, asked by aryankumarsingh56, 8 months ago

how to solve this problem. pls help​

Attachments:

Answers

Answered by akashreddy12379
1

Step-by-step explanation:

Without loss of generality we can assume that a≥b≥c

Let

(−a+b+c)(a−b+c)(a+b−c)=S

⇒S=(−a+b+c)[a−(b−c)][a+(b−c)]

⇒S=(−a+b+c)[a

2

−(b−c)

2

]

⇒S=(−a+b+c)[a

2

−b

2

−c

2

+2bc]

⇒S=−(a

3

+b

3

+c

3

)−2abc+b

2

c+bc

2

+ab

2

+a

2

b+ac

2

+a

2

c

⇒abc−S=(a

3

+b

3

+c

3

)+3abc−(b

2

c+bc

2

+ab

2

+a

2

b+ac

2

+a

2

c)

⇒abc−S=(a

3

−a

2

b)+(b

3

−b

2

c)+(c

3

−c

2

a)+(abc−bc

2

)+(abc−ab

2

)+(abc−a

2

c)

⇒abc−S=a

2

(a−b)+b

2

(b−c)+c

2

(c−a)+bc(a−c)+ab(c−b)+ac(b−a)

⇒abc−S=a(a−b)(a−c)+b(b−c)(b−a)+c(c−a)(c−b)

⇒abc−S=(a−b)[a(a−c)−b(b−c)]+c(c−a)(c−b)

⇒abc−S=(a−b)2[a

2

−b

2

+c(b−a)]+c(c−a)(c−b)

⇒abc−S=(a−b)

2

[a+b−c]+c(c−a)(c−b)

Now (c−a)≤0 and (c−b)≤0

⇒c(c−a)(c−b)≥0

and

(a−b)

2

(a+b−c)≥0

This shows

abc−S≥0

⇒S−abc≤0⇒(b+c−a)(c+a−b)(a+b−c)−abc≤0

Hence, the expression is non-positive.

So, (C)

Similar questions