Math, asked by sagarnavina, 1 year ago

how to solve with working
(1.013*10^5)+(1*10^3*9.8)

Answers

Answered by AbhijithPrakash
4

Answer:

\left(1.013\cdot \:10^5\right)+\left(1\cdot \:10^3\cdot \:9.8\right)=111100

Step-by-step explanation:

\left(1.013\cdot \:10^5\right)+\left(1\cdot \:10^3\cdot \:9.8\right)

\gray{\mathrm{Remove\:parentheses}:\quad \left(a\right)=a}

=1.013\cdot \:10^5+1\cdot \:10^3\cdot \:9.8

\gray{\mathrm{Multiply\:the\:numbers:}\:1\cdot \:9.8=9.8}

=10^5\cdot \:1.013+10^3\cdot \:9.8

\black{1.013\cdot \:10^5}

1.013\cdot \:10^5

\gray{10^5=100000}

=100000\cdot \:1.013

\gray{\mathrm{Multiply\:the\:numbers:}\:1.013\cdot \:100000=101300}

=101300

\black{9.8\cdot \:10^3}

9.8\cdot \:10^3

\gray{10^3=1000}

=1000\cdot \:9.8

\gray{\mathrm{Multiply\:the\:numbers:}\:9.8\cdot \:1000=9800}

=9800

=101300+9800

\mathrm{Add\:the\:numbers:}\:101300+9800=111100

=111100

Similar questions