Math, asked by assthha161, 1 year ago

How we can know that a number have a rational square root


assthha161: For example the number is √156.25

Answers

Answered by bhargav1282
0

by using for b^=√4ac

Answered by viny6
0

hey mate

Very-well-known proof by contradiction: if √n were rational, let √n = a/b, with a,b in lowest reduced form, hence have no common divisor. ... You can also take the square root of a rational non-integer, that is a fraction, and if the numerator and denominator are both perfect squares, you will have rational square roots.

hope it's helps

mark me as brainliest if you like

Similar questions