Math, asked by vansajb, 1 month ago

how we can solve this question ​

Attachments:

Answers

Answered by zarabasit68
0

Answer:

the answer is part A

Step-by-step explanation:

 {x}^{ \frac{12}{7} }  -  {x}^{ \frac{5}{7} }

 {x}^{ \frac{12 - 5}{7} }

 {x}^{ \frac{7}{7} }

x

Answered by LivetoLearn143
1

Complete Correct Question :-

Which of the following is equal to x?

\rm :\longmapsto\:(a) \:  {\bigg(x \bigg) }^{\dfrac{12}{7} }  -  {\bigg(x\bigg) }^{\dfrac{5}{7} }

\rm :\longmapsto\:(b) \:  \sqrt[12]{ {\bigg( {x}^{4} \bigg) }^{\dfrac{1}{3} } }

\rm :\longmapsto\:(c) \:  {\bigg( \sqrt{ {x}^{3} }  \bigg) }^{\dfrac{2}{3} }

\rm :\longmapsto\:(d) \:  {\bigg(x\bigg) }^{\dfrac{12}{7} }  \times  {\bigg(x\bigg) }^{\dfrac{7}{12} }

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:(a) \:  {\bigg(x \bigg) }^{\dfrac{12}{7} }  -  {\bigg(x\bigg) }^{\dfrac{5}{7} }

we cannot simplify this further, so its not equal to x.

Consider,

\rm :\longmapsto\:(b) \:  \sqrt[12]{ {\bigg( {x}^{4} \bigg) }^{\dfrac{1}{3} } }

\rm  =  \:  \sqrt[12]{ {\bigg( {x} \bigg) }^{\dfrac{4}{3} } }

{\bigg \{ \because \: \sf \:  {( {x}^{m}) }^{n}   =  {x}^{mn} \bigg \}}

\rm  =  \:  {\bigg( {x} \bigg) }^{\dfrac{4}{3}  \times  \dfrac{1}{12} }

{\bigg \{ \because \: \sf \:   \sqrt[x]{y} =  {\bigg(y\bigg) }^{\dfrac{1}{x} }  \bigg \}}

\rm  =  \:  {\bigg( {x} \bigg) }^{\dfrac{4}{9}}

\rm  \:  \ne \: x

Consider,

\rm :\longmapsto\:(c) \:  {\bigg( \sqrt{ {x}^{3} }  \bigg) }^{\dfrac{2}{3} }

\rm  \:  =  \:  {\bigg( {\bigg( {x}^{3} \bigg) }^{\dfrac{1}{2} } \bigg) }^{\dfrac{2}{3} }

{\bigg \{ \because \: \sf \:   \sqrt[x]{y} =  {\bigg(y\bigg) }^{\dfrac{1}{x} }  \bigg \}}

\rm \:  =  {\bigg(x\bigg) }^{\dfrac{1}{2} \times \dfrac{3}{1}  \times \dfrac{2}{3}  }

\rm \:  =  x

So,

\bf :\longmapsto\: \:  {\bigg( \sqrt{ {x}^{3} }  \bigg) }^{\dfrac{2}{3} }  = x

So,

Option (c) is correct.

Consider,

\rm :\longmapsto\:(d) \:  {\bigg(x\bigg) }^{\dfrac{12}{7} }  \times  {\bigg(x\bigg) }^{\dfrac{7}{12} }

\rm \:  =  {\bigg(x\bigg) }^{\dfrac{12}{7} + \dfrac{7}{12}  }

\rm \:  =  {\bigg(x\bigg) }^{\dfrac{144 + 49}{84} }

\rm \:  =  {\bigg(x\bigg) }^{\dfrac{193}{84} }

\rm \:   \ne \: x

Thus,

Option (c) is correct.

Similar questions