Physics, asked by Anonymous, 3 months ago

How will the momentum of a body changes if its K.E. is doubled

Answers

Answered by IdyllicAurora
11

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the Concept of Kinetic Energy and Momentum Ratio has been used. Firstly we need to find the relation between Momentum and Kinetic Energy of the body with normal Kinetic Energy. After that we shall find relation between Momentum when Kinetic Energy us doubled. Finally we can find the increase in Momentum.

______________________________________

Formula Used :-

\\\;\boxed{\sf{Kinetic\;Energy,\;K.E.\;=\;\bf{\dfrac{1}{2}\;\times\;mv^{2}}}}

\\\;\boxed{\sf{Momentum,\;p\;=\;\bf{mv}}}

______________________________________

Solution :-

• Let the mass of the body be 'm'

• Let the velocity of the body be 'v'

______________________________________

~ Original Kinetic Energy and Momentum ::

\\\;\;\sf{:\rightarrow\;\;Kinetic\;Energy,\;K.E.\;=\;\bf{\dfrac{1}{2}\;\times\;mv^{2}}}

\\\;\;\bf{:\rightarrow\;\;K.E._{(Original)}\;=\;\bf{\dfrac{1}{2}\;\times\;mv^{2}}}

\\\;\;\sf{:\Longrightarrow\;\;Momentum,\;p\;=\;\bf{mv}}

\\\;\;\bf{:\Longrightarrow\;\;p_{(Original)}\;=\;\bf{mv}}

Relation :-

\\\;\;\sf{:\rightarrow\;\;K.E._{(Original)}\;=\;\bf{\dfrac{1}{2}\;\times\;mv\;\times\;v}}

By applying Momentum, it can be written as,

\\\;\;\sf{:\rightarrow\;\;K.E._{(Original)}\;=\;\bf{\dfrac{1}{2}\;\times\;p_{(Original)}\;\times\;v}}

\\\;\;\bf{:\rightarrow\;\;p_{(Original)}\;=\;\bf{\dfrac{K.E._{(Original)}\;\times\;2}{v}}}

\\\;\;\bf{:\rightarrow\;\;p_{(Original)}\;\times\;v\;=\;\bf{K.E._{(Original)}\;\times\;2}}

______________________________________

~ Momentum when Kinetic Energy is Doubled ::

\\\;\;\sf{:\rightarrow\;\;Kinetic\;Energy,\;K.E.\;=\;\bf{\dfrac{1}{2}\;\times\;mv^{2}}}

Now multiplying and dividing all the terms by m, we get

\\\;\;\sf{:\rightarrow\;\;Kinetic\;Energy,\;K.E.\;=\;\bf{\dfrac{1}{2}\;\times\;mv^{2}\;\times\;\dfrac{m}{m}}}

\\\;\;\sf{:\rightarrow\;\;Kinetic\;Energy,\;K.E.\;=\;\bf{\dfrac{1}{2m}\;\times\;m^{2}\:v^{2}}}

\\\;\;\sf{:\rightarrow\;\;Kinetic\;Energy,\;K.E.\;=\;\bf{\dfrac{1}{2m}\;\times\;(mv)^{2}}}

We know that, p = mv

\\\;\;\sf{:\rightarrow\;\;Kinetic\;Energy,\;K.E.\;=\;\bf{\dfrac{1}{2m}\;\times\;(p)^{2}}}

\\\;\;\sf{:\rightarrow\;\;p^{2}\;=\;\bf{2\:m\:K.E.}}

\\\;\;\sf{:\rightarrow\;\;p\;=\;\bf{\sqrt{2\:m\:K.E.}}}

Now when the Kinetic Energy is doubled that is 2KE.

\\\;\;\sf{:\rightarrow\;\;p_{(changed)}\;=\;\bf{\sqrt{2\:m\:2\:K.E.}}}

\\\;\;\sf{:\rightarrow\;\;p_{(changed)}\;=\;\bf{\sqrt{4\:m\:\;\times\;\dfrac{1}{2}\;\times\;mv^{2}}}}

\\\;\;\sf{:\rightarrow\;\;p_{(changed)}\;=\;\bf{\sqrt{2\:m^{2}v^{2}}}}

\\\;\;\sf{:\rightarrow\;\;p_{(changed)}\;=\;\bf{\sqrt{2\:(mv)^{2}}}}

\\\;\;\sf{:\rightarrow\;\;p_{(changed)}\;=\;\bf{\sqrt{2\:(p_{(original)})^{2}}}}

\\\;\;\sf{:\rightarrow\;\;p_{(changed)}\;=\;\bf{p_{(original)}\;\sqrt{2}}}

This means, Momentum increases by the rate of 2 when Kinetic Energy is doubled.

\\\;\underline{\boxed{\tt{Thus,\;\;increase\;\;in\;\;Momentum\;\;=\;\bf{\blue{\sqrt{2}\;\;times}}}}}

______________________________________

More Formulas to know :

\\\;\sf{\leadsto\;\;\green{Force\;=\;ma}}

\\\;\sf{\leadsto\;\;\green{Potential\;Energy\;=\;mgh}}

\\\;\sf{\leadsto\;\;\green{Workdone\;=\;Force\;\times\;Distance}}

\\\;\sf{\leadsto\;\;\green{Power\;=\;\dfrac{Workdone}{Time}}}

\\\;\sf{\leadsto\;\;\green{Pressure\;=\;\dfrac{Force}{Area}}}

Answered by Anonymous
0

yo yo honey singh ah uh bzshajw.

 \frac{4}{8}  = 0.5

i am right answer na brooo

Similar questions