Math, asked by sanjayagrawal4583, 8 hours ago

i^107+i¹¹²+i^117+i^122=0
prove : ​

Answers

Answered by varadad25
3

Answer:

\displaystyle{\boxed{\red{\sf\:i^{107}\:+\:i^{112}\:+\:i^{117}\:+\:i^{122}\:=\:0}}}

Step-by-step-explanation:

The given equation is

\displaystyle{\sf\:i^{107}\:+\:i^{112}\:+\:i^{117}\:+\:i^{122}\:=\:0}

We have to prove this equation.

We know that,

\displaystyle{\sf\:i\:=\:\sqrt{-\:1}}

\displaystyle{\sf\:i^2\:=\:-\:1}

\displaystyle{\sf\:i^3\:=\:-\:i}

\displaystyle{\sf\:i^4\:=\:1}

\displaystyle{\sf\:i^{4n}\:=\:1\:\quad\cdots\:n\:\in\:Z}

Now,

\displaystyle{\sf\:i^{107}\:+\:i^{112}\:+\:i^{117}\:+\:i^{122}\:=\:0}

\displaystyle{\implies\sf\:LHS\:=\:i^{107}\:+\:i^{112}\:+\:i^{117}\:+\:i^{122}}

\displaystyle{\implies\sf\:LHS\:=\:i^{104\:+\:3}\:+\:i^{4\:\times\:28}\:+\:i^{116\:+\:1}\:+\:i^{120\:+\:2}}

We know that,

\displaystyle{\pink{\sf\:a^{m\:+\:n}\:=\:a^m\:\times\:a^n}}

\displaystyle{\implies\sf\:LHS\:=\:i^{104}\:\times\:i^3\:+\:1\:+\:i^{116}\:\times\:i^1\:+\:i^{120}\:\times\:i^2}

\displaystyle{\implies\sf\:LHS\:=\:i^{4\:\times\:26}\:\times\:(\:-\:i\:)\:+\:1\:+\:i^{4\:\times\:29}\:\times\:i\:+\:i^{4\:\times\:30}\:\times\:(\:-\:1\:)}

\displaystyle{\implies\sf\:LHS\:=\:1\:\times\:(\:-\:i\:)\:+\:1\:+\:1\:\times\:i\:+\:1\:\times\:(\:-\:1\:)}

\displaystyle{\implies\sf\:LHS\:=\:-\:i\:+\:1\:+\:i\:-\:1}

\displaystyle{\implies\sf\:LHS\:=\:-\:i\:+\:i\:+\:1\:-\:1}

\displaystyle{\implies\sf\:LHS\:=\:0\:+\:0}

\displaystyle{\implies\sf\:LHS\:=\:0}

\displaystyle{\sf\:RHS\:=\:0}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:LHS\:=\:RHS\:}}}}

Hence proved!

Answered by takename25
10

Answer:

topic :

  • E and I

given :

  • i^107+i¹¹²+i^117+i^122=0

solution :

  • please check the attached file there wil you find your answer

Attachments:
Similar questions
Math, 8 months ago