Math, asked by karthick24042004, 10 months ago

i 1947+i 1950 complex number​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathrm{i^{1947}+i^{1950}}

\textbf{To find:}

\text{Simplified form of}

\mathrm{i^{1947}+i^{1950}}

\textbf{Solution:}

\text{Concept used:}

\mathrm{i=\sqrt{-1}}

\mathrm{i^2=-1}

\mathrm{i^3=-i}

\mathrm{i^4=1}

\text{Consider,}

\mathrm{i^{1947}+i^{1950}}

\text{Split the power interms of multiple of 4}

\mathrm{=i^{1944}\;i^3+i^{1948}\;i^2}

\mathrm{=i^{1944}(-i)+i^{1948}(-1)}

\mathrm{=(i^4)^{486}(-i)+(i^4)^{487}(-1)}

\mathrm{=(1)^{486}(-i)+(1)^{487}(-1)}

\mathrm{=(1)(-i)+(1)(-1)}

\mathrm{=-i-1}

\mathrm{=-1-i}

\textbf{Answer:}

\text{The simplified form is -1-i}

Find more:

If a-bi/a+bi=1+i/1-i then,prove a+b=0

https://brainly.in/question/14173316

Express the complex number z = 5+i/2+3i in the form a + ib

https://brainly.in/question/6695271

Find the square root of -12+6i

https://brainly.in/question/17692861

Similar questions