Math, asked by zainabkhanday4952, 5 months ago

I 4 m
10. A rectangular lawn 80 m long and 50 m wide has
a gravel path 4 m wide running all around it. Find
the area of the path. [HINT: The length and breadth
increase by 4 m + 4 m.]
1.4 m
80 m
50 m.​

Answers

Answered by Anonymous
50

⠀⠀⠀⠀⠀⠀\star{\underline{\bf{Required\: figure}}}

Given

  • Length of the rectangular lawn is 80m.
  • Width of the rectangular lawn is 50m.
  • Width of path is 4m.

To find

  • Area of the path around the lawn.

Solution

  • Firstly, we will calculate area of ABCD.

For ABCD

  • Length = 80m + 4m + 4m
  • Length = 89m

  • Width = 50m + 4m + 4m
  • Width = 59m

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{We\: know\: that}}}

\large{\boxed{\boxed{\bf{Area_{(Rectangle)} = Length \times Breadth}}}}

\tt:\implies\: \: \: \: \: \: \: \: {Area_{(ABCD)} = 89 \times 59}

\tt:\implies\: \: \: \: \: \: \: \: {Area_{(ABCD)} = 5,251\: m^2}

  • Now,

For PQRS

  • Length = 80m
  • Breadth = 50m

\tt:\implies\: \: \: \: \: \: \: \: {Area_{(PQRS)} = 80 \times 50}

\tt:\implies\: \: \: \: \: \: \: \: {Area_{(PQRS)} = 4,000\: m^2}

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{Calculating\: the\: area\: of\: path}}}

 \boxed{\bf{\bigstar{Area_{(Path)} = Area_{(ABCD)} - Area_{(PQRS)}{\bigstar}}}}

\tt:\implies\: \: \: \: \: \: \: \: {Area_{(Path)} = 5,251 - 4,000}

\tt:\implies\: \: \: \: \: \: \: \: {Area_{(Path)} = 1,251\: m^2}

Hence,

  • The area of path is 1,251 m².
Attachments:
Similar questions