Math, asked by ashirbadb80, 6 months ago

I am giving you 9 points to solve
so please don't spam​

Attachments:

Answers

Answered by bheemapallirajini
0

Answer:

2^(a-5) . (2×3)^(2a-4)= 2^{(a-5)+(2a-4)} .3^(2a-4)

and 1/(12^4)(2) = 3^(-4)×2^(-9).

so let's equate powers of same bases i.e.,

power of 3:- 2a-4= -4 ; a=0

power of 2:- 3a-9= -9 ; a=0

so finally the value of a is zero.

thank you

Answered by Anonymous
2

Question:-

 {2}^{a - 5}  \times  {6}^{2a - 4}  =  \frac{1}{ {12}^{4}  \times 2}

Solution:-

 = {2}^{a - 5}  \times  {6}^{2a - 4}  =  \frac{1}{ {12}^{4}  \times 2}  \\  = {2}^{a - 5}  \times  {6}^{2a - 4}  =  \frac{1}{ {3}^{4}  \times  { ({2}^{2} )}^{4}   \times  {2}^{1} }  \\  = {2}^{a - 5}  \times  {6}^{2a - 4}  =  \frac{1}{ {3}^{4}  \times  {2}^{8} \times  {2}^{1}  }   \\   = {2}^{a - 5}  \times  {6}^{2a - 4}  = \frac{1}{ {3}^{4} \times  {2}^{4}  \times  {2}^{5}  }  \\  = {2}^{a - 5}  \times  {6}^{2a - 4}  = \frac{1}{ {(2 \times 3)}^{4}  \times  {2}^{5} }  \\  = {2}^{a - 5}  \times  {6}^{2a - 4}  =  {(6)}^{ - 4}  \times  {(2)}^{ - 5}

Therefore, by comparing,

a - 5 = (-5)

=> a =( -5) + 5

=> a = 0

(and)

2a - 4 = (-4)

=> 2a = (-4) + 4

=> a = 0

__________________________

Therefore,

\huge\rm{\boxed{ a = 0 }}

Concept used:-

Concept :- Exponential concepts

Marks :- 4 (or) 5 marks

#ItzSayan

Similar questions