Math, asked by mrudhularao, 1 day ago

i became mental please slove this

Attachments:

Answers

Answered by amannscharlie
1

let the common multiple be x

Maanas age = 5x and ravi age = 6x

  • 5 years from now their ratio of age will be 6:7

•°• 5x + 5 = maanas age ..five year from now

6x + 5 = ravi age .. five year from now

therefore the condition will be apply like this:

(5x + 5)/(6x + 5) = 6/7

7(5x + 5) = 6(6x + 5)

35x + 35 = 36x + 30

35x - 37x = 30 - 35

-2x = -5

x = 5/2

Present age :

maanas age = 5x = 5× 5/2 = 25/2 = 12.5 years

ravi age = 6x = 6 × 5/2 = 30/2 = 15years

Answered by raghvendrark500
7

Let the present ages of Maanas and Ravi be x and y respectively.

Therefore ,

\quad\bold{\frac{x}{y}=5:6}

\Rightarrow\bold{6x=5y}

\Rightarrow\bold{6x-5y=0}

\bold{\blue{\text{multipling both sides with 6}}}

\Rightarrow\bold{36x-30y=0}\qquad\qquad -eq1

\bold{\blue{\text{After five years }}}

\quad\bold{\frac{x+5}{y+5}=6:7}

\Rightarrow\bold{7(x+5)=6(y+5)}

\Rightarrow\bold{7x+35=6y+30}

\Rightarrow\bold{7x-6y=-5}

\blue{\bold{\text{multipling both sides with 5}}}

\quad\bold{35x-30y=-25}\qquad\qquad -eq2

\blue{\bold{\text{On subtracting eq2 from eq1 we get,}}}

\quad\bold{36x-30y-(35x-30y)=0-(-25)}

\Rightarrow\bold{36x-30y-35x+30y=25}

\Rightarrow\huge\bold{\green{\boxed{\red{x}=\pink{25}}}}

\blue{\bold{\text{On substituting the value of x in eq1}}}

\quad\bold{6x-5y=0}

\Rightarrow\bold{6(25)-5y=0}

\Rightarrow\bold{150-5y=0}

\Rightarrow\bold{-5y=-150}

\Rightarrow\bold{5y=150}

\Rightarrow\bold{y=\frac{150}{5}}

\Rightarrow\bold{y=\frac{\red{\cancel{\blue{150}}}^{\green{\:\:30}}}{\red{\cancel{\blue{\:\:\:5}}}}}

\Rightarrow\huge\bold{\green{\boxed{\red{y}=\pink{30}}}}

Henceforth,

\bold{\purple{present \:age\:of\:Maanas\:is}\:\pink{25\:years}}

\bold{\purple{present \:age\:of\:Ravi\:is}\:\pink{30\:years}}

Similar questions