Math, asked by hiralalgt24, 3 months ago

i don"t know how to solve this question
can anyone help me

Attachments:

Answers

Answered by nancybhatia1397
2

Answer:

perimeter of rectangle = 2( l+b )

= 2× 260 + 175

= 2 × 435

= 870 m

cost of fencing per m= Rs 40

cost of fencing 870 m = 40 × 870

= Rs 34800 Ans

Answered by Anonymous
36

Given: A rectangular field is 260m Wide and 175m wide and the cost to fence it is at the rate rupees 40 per meter

To Find: The total cost of fencing the rectangular field

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

~here,we have given the length and the breadth of the rectangle and we have to find the total cost of fencing the field

So,In order to find the cost to fence the field we have to find its perimeter in the unit meters and then multiply it with the cost of fencing per meter respectively

 \star \: {\blue{ \underline{ \boxed{ \pink{ \sf{  perimeter_{(rectangle)} = 2(lenght + width)}}}}}}

 \\

Substituting the values we get :

 \\

{ : \implies} \sf \: perimeter = 2(l + b)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \sf \: perimeter = 2(260 + 175) \:  \:  \\  \\  \\ { : \implies} \sf \: perimeter = 2(435) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \: perimeter = { \pink{ \underline{  \boxed{ \frak{870m}}} \bigstar}} \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

{\underline {\rm{Hence \:the \:perimeter \:of \:the \:field \:is \:870m}}}

  \\

Now let's find the cost of fencing

~ As we know that the cost of fencing per meter is rupees 40 let's multiply the perimeter with rupees 40 to find the total cost of fencing

 \\

 \longrightarrow \sf \: cost \: of \: fencing = 870 \times 40 \:  rupess\\ \\   \\ \dashrightarrow \sf \: cost \: of \: fencing = \orange{ rupees \: 34,800} \:  \:  \:  \:

 \\

{ \rm{ \underline{ \therefore \: the \: total \: cost \: of \: fencing = 34800} \bigstar}}

 \\

Diagram:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 260m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 175 m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

[Note : kindly see it from the web if you need the diagram]

More to know:

\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

Similar questions