( I )expand the following numbers using
exponents. 1)623.98 2)2896.305
( II ) If 2 power x =1 then find the value of x
Answers
Answered by
1
Answer:
2.answer
The required value of x is given by :
x = \frac{\ln 1.5}{\ln 6}x=
ln6
ln1.5
Step-by-step explanation:
\begin{gathered}2^{x+1}=3^{1-x}\\\\\text{Taking natural log on both the sides}\\\\\implies (x+1)\ln 2=(1-x)\ln 3\\\\\implies x\ln 2+ \ln 2=\ln 3-x\ln 3\\\\\implies x\ln 2+x\ln 3=\ln 3-\ln 2\\\\\implies x(\ln 2 +\ln 3) = \ln 3-\ln 2\\\\\implies x\ln 6=\ln 1.5\\\\\implies x = \frac{\ln 1.5}{\ln 6}\end{gathered}
2
x+1
=3
1−x
Taking natural log on both the sides
⟹(x+1)ln2=(1−x)ln3
⟹xln2+ln2=ln3−xln3
⟹xln2+xln3=ln3−ln2
⟹x(ln2+ln3)=ln3−ln2
⟹xln6=ln1.5
⟹x=
ln6
ln1.5
Hence, The required value of x is given by :
x = \frac{\ln 1.5}{\ln 6}x=
ln6
ln1.5
Answered by
1
Answer:
The required value of x is given by :
x = \frac{\ln 1.5}{\ln 6}x=
ln6
ln1.5
Similar questions
English,
3 days ago
Social Sciences,
3 days ago
CBSE BOARD XII,
6 days ago
English,
8 months ago
English,
8 months ago