Math, asked by udhvsasane16, 11 months ago

(i) For drawing the graph of 2x - 6y = 3, if the value of x is - 3, what is the
value of y?

Answers

Answered by Aloi99
67

Answer:

 \mathbb{Question:-}

Find value of y

if x=-3

equation->2x-6y=3

Step-by-step explanation:

\green{Solution:-}

First put value of x=-3 in the equation✓

i.e, 2×(-3)-6y=3

=>-6-6y=3

6(-1-y)=3

=] -1-y=3/6

=} -1-y=1/2

-y=1/2+1---Cross multiplication

We get,

-y=2+1/2

=>-y=3/2

y=-3/2

 \mathcal{BE \: BRAINLY}

Answered by Anonymous
87

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

\small{\underline{\blue{\sf{Given :}}}}

  • Equation = 2x - 3y = 3
  • x = -3

\rule{200}{1}

\small{\underline{\green{\sf{Solution :}}}}

We have equation :

\large \star {\boxed{\sf{2x \: - \: 6y \: = \: 3}}} \\ \\ \small{\underline{\pink{\sf{\: \: \: \: \: \:\: \: \: \: Put \: x \: = \: -3 \: \: \: \: \: \: \: \: \: \:}}}} \\ \\ \implies {\sf{2(-3) \: - \: 6y \: = \: 3}} \\ \\ \implies {\sf{-6 \: - \: 6y \: = \: 3}} \\ \\ \implies {\sf{-6y \: = \: 3 \: + \: 6}} \\ \\ \implies {\sf{-6y \: = \: 9}} \\ \\ \implies {\sf{-y \: = \: \dfrac{9}{6}}} \\ \\ \implies {\sf{y \: = \: \dfrac{-3}{2}}}

\large \leadsto {\boxed{\sf{y \: = \: \dfrac{-3}{2}}}}

Similar questions