I=इंटीग्रेशन sin3 x cos 3x dx =
Answers
EXPLANATION.
⇒ ∫sin³xcos³xdx.
As we know that,
We can write equation as,
⇒ ∫sin(x).sin²xcos³xdx.
As we know that,
Formula of :
⇒ sin²x + cos²x = 1.
⇒ sin²x = 1 - cos²x.
Put the value of sin²x in equation, we get.
⇒ ∫sin(x)(1 - cos²x)cos³xdx.
By using substitution method.
Let we assume that,
⇒ cos(x) = t.
Differentiate W.R.T x, we get.
⇒ -sin(x)dx = dt.
⇒ sin(x)dx = - dt.
Substitute the value in the equation, we get.
⇒ ∫(1 - cos²x)cos³xsin(x)dx.
⇒ ∫(1 - t²)t³(-dt).
⇒ -∫(1 - t²)t³dt.
⇒ -[∫t³dt - ∫t⁵dt].
As we know that,
Formula of :
⇒ ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠-1).
Using this formula in equation, we get.
⇒ -[t³⁺¹/3 + 1 - t⁵⁺¹/5 + 1] + c.
⇒ -[t⁴/4 - t⁶/6] + c.
⇒ t⁶/6 - t⁴/4 + c.
Put the value of t = cos(x) in equation, we get.
⇒ cos⁶(x)/6 - cos⁴(x)/4 + c.
MORE INFORMATION.
Basic theorem of integration.
If f(x), g(x) are two functions of a variable x and k is a constant, then
(1) = ∫k f(x)dx = k∫f(x)dx + c.
(2) = ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx + c.
(3) = d(∫f(x)dx)/dx = f(x).
(4) = ∫(d(f(x)/dx)dx = f(x).
Correct Question:-
Solution:-
Let cos x = t
Differentiating w.r.t.x
Thus, our equation becomes
Putting back the value of t = cos x
I hope it's help you...☺