(i) If x² + 1/x² = 7 and x ≠ 0; find the value of: 7x³ + 8x - 7/x³ - 8/x
Answers
Answered by
27
Let x² + (1/x²) = 7 .................(1)
Then,
=( x² + 1/x² - 2.x.1/x ) = 7 - 2
∴ ( x - 1/x )² = 5
∴ x - 1/x = ± √5 .............. (2)
∴ x³ - 1/x³ = ( x - 1/x )( x² + 1/x² + 1 )
. .. . . . . . .= ( ± √5 ) [ ( 7 ) + 1 ] ............. from (1), (2)
. . . . . . . . .= ± 8√5 .................. (3)
Hence, the required expression is
= 7x³ + 8x - 7/x³ - 8x
= 7 ( x³ - 1/x³ ) + 8 ( x - 1/x )
= 7 ( ± 8√5 ) + 8 ( ± √5 )
= ± ( 56 + 8 ) √5
= ± 64√5
Then,
=( x² + 1/x² - 2.x.1/x ) = 7 - 2
∴ ( x - 1/x )² = 5
∴ x - 1/x = ± √5 .............. (2)
∴ x³ - 1/x³ = ( x - 1/x )( x² + 1/x² + 1 )
. .. . . . . . .= ( ± √5 ) [ ( 7 ) + 1 ] ............. from (1), (2)
. . . . . . . . .= ± 8√5 .................. (3)
Hence, the required expression is
= 7x³ + 8x - 7/x³ - 8x
= 7 ( x³ - 1/x³ ) + 8 ( x - 1/x )
= 7 ( ± 8√5 ) + 8 ( ± √5 )
= ± ( 56 + 8 ) √5
= ± 64√5
Answered by
1
Step-by-step explanation:
hope it will help you mark as brainlist
Attachments:
Similar questions