Math, asked by tanyasanya, 10 months ago

I=integral dx upon x+2√x+3​

Attachments:

Answers

Answered by ERB
1

Step-by-step explanation:

let, x+3 = z² ► dx = 2z dz

so,

\int\limits {\frac{2z}{z^2-3+ 2z} } \, dz

here d({z²-3+ 2z) = (2z+2) dz\

\int\limits {\frac{2z + 2 - 2}{z^2-3+ 2z} } \, dz

= \int\limits {\frac{d(z^2-3+ 2z)}{z^2-3+ 2z} }  - 2 \int\limits {\frac{1}{z^2-3+ 2z} } \, dz

=  ln(z^2 - 3 + 2z) - 2 \int\limits {\frac{1}{z^2 +3z - z-3} } \, dz

=  ln(z^2 - 3 + 2z) - 2 \int\limits {\frac{1}{(z+3)(z-1)} } \, dz

=  ln(z^2 - 3 + 2z) - 2\int\limits {(\frac{1}{-4(z+3)} +\frac{1}{4(z-1)}} )\, dz

=  ln(z^2 - 3 + 2z) + \int\limits {(\frac{1}{2(z+3)} -\frac{1}{2(z-1)}} )\, dz

=  ln(z^2 - 3 + 2z) + \frac{1}{2} ln(z+3) -  \frac{1}{2} ln(z-1)

= ln(|x + 2\sqrt{x+3}|) + \frac{1}{2} ln(|\sqrt{x+3}+3|) -  \frac{1}{2} ln(|\sqrt{x+3}-1|)

Similar questions