Math, asked by AASRITH, 1 year ago

I is known that cos2theta=cos ^2 theta-sin^2theta and that sin^2theta+cos^2 theta=1. Find the value of sin theta and cos theta in terms of cos2theta.

Attachments:

Answers

Answered by vedika17
2

cos2thetha +  {sin}^{2} thetha \:  =  {cos}^{2} thetha
on putting this value in another equation we get

cos2thetha \:  +  {sin}^{2} thetha \:  +  {sin}^{2} thetha = 1
cos2thetha +2sin^2 theta =1
sin thetha =
 \sqrt{ \frac{1 - cos2thetha}{2} }
similarly it is of cos thetha
Answered by guptaramanand68
2

 \cos(2x)  =  { \cos }^{2} x -   { \sin }^{2} x
 { \sin }^{2} x +  { \cos }^{2} x = 1
Use the second identity in the first,

 \cos(2x)  =   { \cos }^{2} x -  {(1 -  { \ \cos  }^{2}x) } \\  \cos(2x)  =2 \cos ^{2} x   - 1 \\  \frac{ \cos(2x ) + 1 }{2}  =  { \cos }^{2}x

Also,

 \cos(2x)  =  { \cos }^{2} x -  { \sin }^{2} x \\  \cos(2x) = 1 -  { \sin }^{2}  x -  { \sin }^{2} x \\  \cos(2x)   = 1 - 2 \sin^{2} x \\  \frac{1 -  \cos(2x) }{2}  =  { \sin }^{2} x

I have left it to the squared expressions. If you want in sin(x) and cos(x), take plus minus square roots on the left hand side.
Similar questions