Math, asked by keshabchandra1979, 2 months ago

I know the but I don't solution please send me right solution
the answer is -171/35​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:\dfrac{3}{4}\bigg(\dfrac{7x - 1}{4}  \bigg) - \bigg(2x - \dfrac{1 - x}{2}  \bigg)  = x + 11

\rm :\longmapsto\:\bigg(\dfrac{21x - 3}{16}  \bigg) - \bigg(\dfrac{4x - (1 - x)}{2}  \bigg)  = x + 11

\rm :\longmapsto\:\bigg(\dfrac{21x - 3}{16}  \bigg) - \bigg(\dfrac{4x - 1 + x}{2}  \bigg)  = x + 11

\rm :\longmapsto\:\bigg(\dfrac{21x - 3}{16}  \bigg) - \bigg(\dfrac{5x - 1}{2}  \bigg)  = x + 11

\rm :\longmapsto\:\dfrac{21x - 3 - 8(5x - 1)}{16}  = x + 11

\rm :\longmapsto\:\dfrac{21x - 3 - 40x + 8}{16}  = x + 11

\rm :\longmapsto\:\dfrac{ - 19x + 5}{16}  = x + 11

\rm :\longmapsto\: - 19x + 5 = 16x + 176

\rm :\longmapsto\: - 19x  - 16x =176 - 5

\rm :\longmapsto\: - 35x = 171

\bf\implies \:x =  \:  -  \: \dfrac{171}{35}

Check :-

Consider RHS

\rm :\longmapsto\:x + 11

\rm \:  =  \:  \:  - \dfrac{171}{35}  + 11

\rm \:  =  \:  \:  \dfrac{ - 171 + 385}{35}

\rm \:  =  \:  \: \dfrac{214}{35}

Consider LHS

\rm :\longmapsto\:\dfrac{3}{4}\bigg(\dfrac{7x - 1}{4}  \bigg) - \bigg(2x - \dfrac{1 - x}{2}  \bigg)

\rm \:  =  \:  \: \:\dfrac{3}{4}\bigg(\dfrac{  \dfrac{ - 1197}{35}  - 1}{4}  \bigg) - \bigg( - \dfrac{342}{35}  - \dfrac{1 + \dfrac{171}{35} }{2}  \bigg)

\rm \:  =  \:  \: \:\dfrac{3}{4}\bigg(\dfrac{  \dfrac{ - 1197 - 35}{35}  }{4}  \bigg) - \bigg( - \dfrac{342}{35}  - \dfrac{ \dfrac{35 + 171}{35} }{2}  \bigg)

\rm \:  =  \:  \: \:\dfrac{3}{4}\bigg(\dfrac{  \dfrac{ - 1232}{35}  }{4}  \bigg) - \bigg( - \dfrac{342}{35}  - \dfrac{ \dfrac{206}{35} }{2}  \bigg)

\rm \:  =  \:  \: -  \dfrac{3}{4} \times \dfrac{308}{35}  - \bigg( - \dfrac{342}{35}   - \dfrac{103}{35} \bigg)

\rm \:  =  \:  \:  - \dfrac{231}{35} - \bigg(\dfrac{ - 342 - 103}{35}  \bigg)

\rm \:  =  \:  \:  - \dfrac{231}{35} - \bigg(\dfrac{ - 445}{35}  \bigg)

\rm \:  =  \:  \:  - \dfrac{231}{35}  +  \bigg(\dfrac{  445}{35}  \bigg)

\rm \:  =  \:  \: \dfrac{214}{35}

Hence, LHS = RHS

Thus, Verified

Similar questions