Math, asked by singhyashi576, 5 months ago

I les triangle, P, Q and R are the mid-points
of the sides BC, CA and AB respectively. If
C16 cm, BC = 20 cm and AB = 24 cm,
find the perimeter of the quadrilateral
ARPQ
А​

Answers

Answered by ahervandan39
0

Answer:

In \:  ΔABC \: </p><p></p><p>R  \: and \:  P \:  are  \: the \:  midpoint \:  of  \: AB  \: and \:  BC \:  \\ RP || AC, RP =  \frac{1}{2}  AC        [By  \: midpoint \:  theorem \\ In \:  a  \: quadrilateral \:  \\ </p><p></p><p>[A  \: pair  \: of \:  side  \: is  \: parallel \:  and \:  equal] \:  \\ RP || AQ, RP = AQ \\ ∴R||  QA \:  is  \: a \:  parallelogram \\ </p><p></p><p></p><p></p><p>

AR =  \frac{1}{2} AB =  \frac{1}{2}  × 30 = 15 \: cm \\ AR = QP = 15                                                     [  ∵   Opposite \:  sides \:  are  \: equal]  \\ ⇒ RP =  \frac{1}{2}  AC =  \frac{1}{2} × 21 = 10 .5cm           [   ∵  Opposite  \: sides \:  are  \:  equal]  \\ Now, \\ Perimeter  \: of  \: ARPQ = AR + QP + RP + AQ \\ = 15 +15 +10.5 +10.5 \\ = 51cm

Similar questions