I'll mark you a brainliest if you answer my question
Are addictive inverse and negitive of a matrix one thing because we change the signs in both of them.
Answers
Answer:
SORRY FROM WHERE DID U GET THIS QUESTION??
Step-by-step explanation:
plzz mark me as brainliest
Answer:
The additive inverse of a number is what you add to a number to create the sum of zero. So in other words, the additive inverse of x is another number, y, as long as the sum of x + y equals zero. The additive inverse of x is equal and opposite in sign to it (so, y = -x or vice versa). For example, the additive inverse of the positive number 5 is -5. That's because their sum, or 5 + (-5) = 0.
What about the additive inverse of a negative number? Using the same approach, if x is a negative number, then its additive inverse is equal and opposite in sign to it. This means that the additive inverse of a negative number is positive. For instance, if x equals -12, then its additive inverse is y = 12. We can verify that the sum of x + y equals zero, since when x = -12 and y = 12, we have -12 + 12 = 0.
It should be noted that the additive inverse of 0 is 0. Zero is the only real number, which is equal to its own additive inverse. It is also the only number for which the equation x = -x is true.
I hope it's help to you