Math, asked by solosince2004, 10 months ago

i make you as brainiest just solve this problem

Attachments:

Answers

Answered by senboni123456
1

Answer:

-cos(A)

Step-by-step explanation:

Given,

 \frac{ \cos(\pi - a) \cot( \frac{\pi}{2} + a ) \cos( - a)   }{ \tan(\pi + a) \tan( \frac{3\pi}{2} + a ) \sin(2\pi - a)   }

We know that,

 \cos(\pi -  \alpha ) =  -  \cos( \alpha )  \:  \: and \:  \:  \cot( \frac{\pi}{2} +  \alpha  )  =  -  \tan( \alpha ) \:  \: and \:  \:  \tan(\pi +  \alpha ) =  \tan( \alpha ) \:  \: and \:  \:  \tan( \frac{3\pi}{2} +  \alpha  ) =  -  \tan( \alpha)   \:  \: and \:  \:  \sin(2\pi -  \alpha) =  -  \sin( \alpha )

On subtituting these, we get,

  \frac{ -  \cos(a). -  \tan(a). -  \cos(a) }{ \tan(a). -  \cot(a). -  \sin(a)   }

On simplifying, we get,

 =  -  \cos(a)

Similar questions