I need answer quickly in step by step answer
Attachments:
Answers
Answered by
2
L.H.S.
= 2sin15cos5+2sin45cos5
[ using sin C+sin D= 2sin C+D/2 cos C-D/2 for sin10+sin20 & sin40+sin50]
= 2cos5 (sin15+sin45)
= 2cos5 (2sin30cos15) [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
= 2cos5 (2 x 1/2 x cos15)
= 2cos5 cos15
R.H.S. = sin70+sin80
= 2sin75cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
sin75 = sin(90-15) = cos 15
L.H.S = 2cos5 cos15
R.H.S. = 2cos15 cos5 [ since, sin75 = cos15 ]
hope this helps you
= 2sin15cos5+2sin45cos5
[ using sin C+sin D= 2sin C+D/2 cos C-D/2 for sin10+sin20 & sin40+sin50]
= 2cos5 (sin15+sin45)
= 2cos5 (2sin30cos15) [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
= 2cos5 (2 x 1/2 x cos15)
= 2cos5 cos15
R.H.S. = sin70+sin80
= 2sin75cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
sin75 = sin(90-15) = cos 15
L.H.S = 2cos5 cos15
R.H.S. = 2cos15 cos5 [ since, sin75 = cos15 ]
hope this helps you
nithinthirumani:
thank you for your answer
Answered by
11
Answer:
step-by-step explanation:
Required to prove:
sin 10° + sin 20° + sin 40° + sin 50° = sin 70° + sin 80°
As we know that,
sin C + sin D = 2 Sin • Cos
Applying this identity,
L.H.S
= (Sin 10° + sin 20 °) + (sin 40° + sin 50° )
= 2 sin •cos + 2 sin •cos
= 2 sin 15°• cos 5° + 2 sin 90°• cos 5°
= 2 sin 15°•cos 5° + 2 sin 45° cos 5°
Taking 2cos 5° as common, we get
= 2 Cos 5° ( sin 15° + sin 45° )
= 2 cos 5° ( 2 sin•cos )
= 2 cos 5° ( 2 sin 30°•cos 15° )
= 2 cos 5° ( 2× 1/2 • cos 15° )
= 2 cos 5°• cos 15°
= 2 cos 5°• cos ( 90°-75° )
now,
we know that,
cos ( 90° - @ ) = sin @
so, further L.H.s
= 2 cos 5°•sin 75°
= 2 sin • cos
= sin 70° + 80°
= L.H.S
Hence,
proved..
ANOTHER APPROACH :-
L.H.S
= (Sin 10° + sin 20 °) + (sin 40° + sin 50° )
= 2 sin •cos + 2 sin •cos
= 2 sin 15°• cos 5° + 2 sin 90°• cos 5°
= 2 sin 15°•cos 5° + 2 sin 45° cos 5°
Taking 2cos 5° as common, we get
= 2 Cos 5° ( sin 15° + sin 45° )
= 2 cos 5° ( 2 sin•cos )
= 2 cos 5° ( 2 sin 30°•cos 15° )
= 2 cos 5° ( 2× 1/2 • cos 15° )
= 2 cos 5°• cos 15°
Now,
R.H.S
= sin 70° + sin 80°
= 2 sin • cos
= 2 sin 75°• cos 5°
= 2 sin (90°- 15°)• cos5°
but,
sin (90°- @ ) = cos @
so, further
R.H.S
= 2 cos 15°• cos 5°
Thus,
L.H.S = R.H.S
Hence, proved
step-by-step explanation:
Required to prove:
sin 10° + sin 20° + sin 40° + sin 50° = sin 70° + sin 80°
As we know that,
sin C + sin D = 2 Sin • Cos
Applying this identity,
L.H.S
= (Sin 10° + sin 20 °) + (sin 40° + sin 50° )
= 2 sin •cos + 2 sin •cos
= 2 sin 15°• cos 5° + 2 sin 90°• cos 5°
= 2 sin 15°•cos 5° + 2 sin 45° cos 5°
Taking 2cos 5° as common, we get
= 2 Cos 5° ( sin 15° + sin 45° )
= 2 cos 5° ( 2 sin•cos )
= 2 cos 5° ( 2 sin 30°•cos 15° )
= 2 cos 5° ( 2× 1/2 • cos 15° )
= 2 cos 5°• cos 15°
= 2 cos 5°• cos ( 90°-75° )
now,
we know that,
cos ( 90° - @ ) = sin @
so, further L.H.s
= 2 cos 5°•sin 75°
= 2 sin • cos
= sin 70° + 80°
= L.H.S
Hence,
proved..
ANOTHER APPROACH :-
L.H.S
= (Sin 10° + sin 20 °) + (sin 40° + sin 50° )
= 2 sin •cos + 2 sin •cos
= 2 sin 15°• cos 5° + 2 sin 90°• cos 5°
= 2 sin 15°•cos 5° + 2 sin 45° cos 5°
Taking 2cos 5° as common, we get
= 2 Cos 5° ( sin 15° + sin 45° )
= 2 cos 5° ( 2 sin•cos )
= 2 cos 5° ( 2 sin 30°•cos 15° )
= 2 cos 5° ( 2× 1/2 • cos 15° )
= 2 cos 5°• cos 15°
Now,
R.H.S
= sin 70° + sin 80°
= 2 sin • cos
= 2 sin 75°• cos 5°
= 2 sin (90°- 15°)• cos5°
but,
sin (90°- @ ) = cos @
so, further
R.H.S
= 2 cos 15°• cos 5°
Thus,
L.H.S = R.H.S
Hence, proved
Similar questions